Decentralised learning with distributed gradient descent and random features
We investigate the generalisation performance of Distributed Gradient Descent with implicit regularisation and random features in the homogenous setting where a network of agents are given data sampled independently from the same unknown distribution. Along with reducing the memory footprint, random...
Hauptverfasser: | Richards, D, Rebeschini, P, Rosasco, L |
---|---|
Format: | Conference item |
Sprache: | English |
Veröffentlicht: |
Proceedings of Machine Learning Research
2020
|
Ähnliche Einträge
Ähnliche Einträge
-
Robust gradient descent for phase retrieval
von: Buna-Marginean, A, et al.
Veröffentlicht: (2025) -
Graph-dependent implicit regularisation for distributed stochastic subgradient descent
von: Richards, D, et al.
Veröffentlicht: (2020) -
Generalization bounds for label noise stochastic gradient descent
von: Huh, JE, et al.
Veröffentlicht: (2023) -
Generalization bounds for label noise stochastic gradient descent
von: Huh, JE, et al.
Veröffentlicht: (2024) -
Optimal statistical rates for decentralised non-parametric regression with linear speed-up
von: Richards, D, et al.
Veröffentlicht: (2019)