Decentralised learning with distributed gradient descent and random features
We investigate the generalisation performance of Distributed Gradient Descent with implicit regularisation and random features in the homogenous setting where a network of agents are given data sampled independently from the same unknown distribution. Along with reducing the memory footprint, random...
Príomhchruthaitheoirí: | Richards, D, Rebeschini, P, Rosasco, L |
---|---|
Formáid: | Conference item |
Teanga: | English |
Foilsithe / Cruthaithe: |
Proceedings of Machine Learning Research
2020
|
Míreanna comhchosúla
-
Robust gradient descent for phase retrieval
de réir: Buna-Marginean, A, et al.
Foilsithe / Cruthaithe: (2025) -
Graph-dependent implicit regularisation for distributed stochastic subgradient descent
de réir: Richards, D, et al.
Foilsithe / Cruthaithe: (2020) -
Generalization bounds for label noise stochastic gradient descent
de réir: Huh, JE, et al.
Foilsithe / Cruthaithe: (2023) -
Generalization bounds for label noise stochastic gradient descent
de réir: Huh, JE, et al.
Foilsithe / Cruthaithe: (2024) -
Optimal statistical rates for decentralised non-parametric regression with linear speed-up
de réir: Richards, D, et al.
Foilsithe / Cruthaithe: (2019)