Singlet triplet-pair production and possible singlet-fission in carotenoids

Internal conversion from the photoexcited state to a correlated singlet triplet-pair state is believed to be the precursor of singlet fission in carotenoids. We present numerical simulations of this process using a π-electron model that fully accounts for electron–electron interactions and electron–...

Descripció completa

Dades bibliogràfiques
Autors principals: Manawadu, D, Valentine, D, Marcus, M, Barford, W
Format: Journal article
Idioma:English
Publicat: American Chemical Society 2022
Descripció
Sumari:Internal conversion from the photoexcited state to a correlated singlet triplet-pair state is believed to be the precursor of singlet fission in carotenoids. We present numerical simulations of this process using a π-electron model that fully accounts for electron–electron interactions and electron–nuclear coupling. The time-evolution of the electrons is determined rigorously using the time-dependent density matrix renormalization group method, while the nuclei are evolved via the Ehrenfest equations of motion. We apply this to zeaxanthin, a carotenoid chain with 18 fully conjugated carbon atoms. We show that the internal conversion of the primary photoexcited state, S2, to the singlet triplet-pair state occurs adiabatically via an avoided crossing within ∼50 fs with a yield of ∼60%. We further discuss whether this singlet triplet-pair state will undergo exothermic versus endothermic intra- or interchain singlet fission.