Temporal trends in prevalence of Plasmodium falciparum drug resistance alleles over two decades of changing antimalarial policy in coastal Kenya.

Molecular surveillance of drug resistance markers through time provides crucial information on genomic adaptations, especially in parasite populations exposed to changing drug pressures. To assess temporal trends of established genotypes associated with tolerance to clinically important antimalarial...

Full description

Bibliographic Details
Main Authors: Okombo, J, Kamau, A, Marsh, K, Sutherland, C, Ochola-Oyier, L
Format: Journal article
Language:English
Published: Elsevier 2014
_version_ 1797073020764815360
author Okombo, J
Kamau, A
Marsh, K
Sutherland, C
Ochola-Oyier, L
author_facet Okombo, J
Kamau, A
Marsh, K
Sutherland, C
Ochola-Oyier, L
author_sort Okombo, J
collection OXFORD
description Molecular surveillance of drug resistance markers through time provides crucial information on genomic adaptations, especially in parasite populations exposed to changing drug pressures. To assess temporal trends of established genotypes associated with tolerance to clinically important antimalarials used in Kenya over the last two decades, we sequenced a region of the pfcrt locus encompassing codons 72-76 of the Plasmodium falciparum chloroquine resistance transporter, full-length pfmdr1 - encoding multi-drug resistance protein, P-glycoprotein homolog (Pgh1) and pfdhfr encoding dihydrofolate reductase, in 485 archived Plasmodium falciparum positive blood samples collected in coastal Kenya at four different time points between 1995 and 2013. Microsatellite loci were also analyzed to compare the genetic backgrounds of parasite populations circulating before and after the withdrawal of chloroquine and sulfadoxine/pyrimethamine. Our results reveal a significant increase in the prevalence of the pfcrt K76 wild-type allele between 1995 and 2013 from 38% to 81.7% (p < 0.0001). In contrast, we noted a significant decline in wild-type pfdhfr S108 allele (p < 0.0001) culminating in complete absence of this allele in 2013. We also observed a significant increase in the prevalence of the wild-type pfmdr1 N86/Y184/D1246 haplotype from 14.6% in 1995 to 66.0% in 2013 (p < 0.0001) and a corresponding decline of the mutant pfmdr1 86Y/184Y/1246Y allele from 36.4% to 0% in 19 years (p < 0.0001). We also show extensive genetic heterogeneity among the chloroquine-sensitive parasites before and after the withdrawal of the drug in contrast to a selective sweep around the triple mutant pfdhfr allele, leading to a mono-allelic population at this locus. These findings highlight the importance of continual surveillance and characterization of parasite genotypes as indicators of the therapeutic efficacy of antimalarials, particularly in the context of changes in malaria treatment policy.
first_indexed 2024-03-06T23:16:01Z
format Journal article
id oxford-uuid:67277d78-caa1-4dfd-9255-4a71f5597bd1
institution University of Oxford
language English
last_indexed 2024-03-06T23:16:01Z
publishDate 2014
publisher Elsevier
record_format dspace
spelling oxford-uuid:67277d78-caa1-4dfd-9255-4a71f5597bd12022-03-26T18:36:28ZTemporal trends in prevalence of Plasmodium falciparum drug resistance alleles over two decades of changing antimalarial policy in coastal Kenya.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:67277d78-caa1-4dfd-9255-4a71f5597bd1EnglishSymplectic Elements at OxfordElsevier2014Okombo, JKamau, AMarsh, KSutherland, COchola-Oyier, LMolecular surveillance of drug resistance markers through time provides crucial information on genomic adaptations, especially in parasite populations exposed to changing drug pressures. To assess temporal trends of established genotypes associated with tolerance to clinically important antimalarials used in Kenya over the last two decades, we sequenced a region of the pfcrt locus encompassing codons 72-76 of the Plasmodium falciparum chloroquine resistance transporter, full-length pfmdr1 - encoding multi-drug resistance protein, P-glycoprotein homolog (Pgh1) and pfdhfr encoding dihydrofolate reductase, in 485 archived Plasmodium falciparum positive blood samples collected in coastal Kenya at four different time points between 1995 and 2013. Microsatellite loci were also analyzed to compare the genetic backgrounds of parasite populations circulating before and after the withdrawal of chloroquine and sulfadoxine/pyrimethamine. Our results reveal a significant increase in the prevalence of the pfcrt K76 wild-type allele between 1995 and 2013 from 38% to 81.7% (p < 0.0001). In contrast, we noted a significant decline in wild-type pfdhfr S108 allele (p < 0.0001) culminating in complete absence of this allele in 2013. We also observed a significant increase in the prevalence of the wild-type pfmdr1 N86/Y184/D1246 haplotype from 14.6% in 1995 to 66.0% in 2013 (p < 0.0001) and a corresponding decline of the mutant pfmdr1 86Y/184Y/1246Y allele from 36.4% to 0% in 19 years (p < 0.0001). We also show extensive genetic heterogeneity among the chloroquine-sensitive parasites before and after the withdrawal of the drug in contrast to a selective sweep around the triple mutant pfdhfr allele, leading to a mono-allelic population at this locus. These findings highlight the importance of continual surveillance and characterization of parasite genotypes as indicators of the therapeutic efficacy of antimalarials, particularly in the context of changes in malaria treatment policy.
spellingShingle Okombo, J
Kamau, A
Marsh, K
Sutherland, C
Ochola-Oyier, L
Temporal trends in prevalence of Plasmodium falciparum drug resistance alleles over two decades of changing antimalarial policy in coastal Kenya.
title Temporal trends in prevalence of Plasmodium falciparum drug resistance alleles over two decades of changing antimalarial policy in coastal Kenya.
title_full Temporal trends in prevalence of Plasmodium falciparum drug resistance alleles over two decades of changing antimalarial policy in coastal Kenya.
title_fullStr Temporal trends in prevalence of Plasmodium falciparum drug resistance alleles over two decades of changing antimalarial policy in coastal Kenya.
title_full_unstemmed Temporal trends in prevalence of Plasmodium falciparum drug resistance alleles over two decades of changing antimalarial policy in coastal Kenya.
title_short Temporal trends in prevalence of Plasmodium falciparum drug resistance alleles over two decades of changing antimalarial policy in coastal Kenya.
title_sort temporal trends in prevalence of plasmodium falciparum drug resistance alleles over two decades of changing antimalarial policy in coastal kenya
work_keys_str_mv AT okomboj temporaltrendsinprevalenceofplasmodiumfalciparumdrugresistanceallelesovertwodecadesofchangingantimalarialpolicyincoastalkenya
AT kamaua temporaltrendsinprevalenceofplasmodiumfalciparumdrugresistanceallelesovertwodecadesofchangingantimalarialpolicyincoastalkenya
AT marshk temporaltrendsinprevalenceofplasmodiumfalciparumdrugresistanceallelesovertwodecadesofchangingantimalarialpolicyincoastalkenya
AT sutherlandc temporaltrendsinprevalenceofplasmodiumfalciparumdrugresistanceallelesovertwodecadesofchangingantimalarialpolicyincoastalkenya
AT ocholaoyierl temporaltrendsinprevalenceofplasmodiumfalciparumdrugresistanceallelesovertwodecadesofchangingantimalarialpolicyincoastalkenya