Chirality assignment of single-walled carbon nanotubes with strain.
Strain-induced band gap shifts that depend strongly on the chiral angle have been observed by optical spectroscopy in single-walled carbon nanotubes (SWCNTs). Uniaxial and torsional strains are generated by changing the environment surrounding the SWCNTs, using the surrounding D2O ice temperature or...
Asıl Yazarlar: | , , , |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
2004
|
Özet: | Strain-induced band gap shifts that depend strongly on the chiral angle have been observed by optical spectroscopy in single-walled carbon nanotubes (SWCNTs). Uniaxial and torsional strains are generated by changing the environment surrounding the SWCNTs, using the surrounding D2O ice temperature or the hydration state of a wrapping polymer. These methods are used as diagnostic tools to determine the quantum number q and examine chiral vector indices for specific nanotubes. |
---|