Homogenization of a neutronic critical diffusion problem with drift
In this paper we study the homogenization of an eigenvalue problem for a cooperative system of weakly coupled elliptic partial differential equations, called the neutronic multigroup diffusion model, in a periodic heterogeneous domain. Such a model is used for studying the criticality of nuclear rea...
Hlavní autor: | Capdeboscq, Y |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
2002
|
Podobné jednotky
-
Homogenization of a diffusion equation with drift
Autor: Capdeboscq, Y
Vydáno: (1998) -
Homogenization of a spectral problem in neutronic multigroup diffusion
Autor: Allaire, G, a další
Vydáno: (2000) -
Homogenization of a neutronic multigroup evolution model
Autor: Capdeboscq, Y
Vydáno: (2000) -
Finite element approximation of elliptic homogenization problems in nondivergence-form
Autor: Capdeboscq, Y, a další
Vydáno: (2020) -
Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface
Autor: Allaire, G, a další
Vydáno: (2002)