Analysing factorizations of action-value networks for cooperative multi-agent reinforcement learning
Recent years have seen the application of deep reinforcement learning techniques to cooperative multi-agent systems, with great empirical success. However, given the lack of theoretical insight, it remains unclear what the employed neural networks are learning, or how we should enhance their learnin...
Hlavní autoři: | Castellini, J, Oliehoek, FA, Savani, R, Whiteson, S |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Springer
2021
|
Podobné jednotky
-
Bayesian action decoder for deep multi-agent reinforcement learning
Autor: Whiteson, S
Vydáno: (2019) -
UneVEn: Universal value exploration for multi-agent reinforcement learning
Autor: Gupta, T, a další
Vydáno: (2021) -
Monotonic value function factorisation for deep multi-agent reinforcement learning
Autor: Rashid, T, a další
Vydáno: (2020) -
Cooperation and Fairness in Multi-Agent Reinforcement Learning
Autor: Aloor, Jasmine, a další
Vydáno: (2024) -
QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning
Autor: Rashid, T, a další
Vydáno: (2018)