Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA
In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2012
|
_version_ | 1826277063358676992 |
---|---|
author | Machida, S Barlow, R Berg, J Bliss, N Buckley, R Clarke, J Craddock, M D'Arcy, R Edgecock, R Garland, J Giboudot, Y Goudket, P Griffiths, S Hill, C Hill, S Hock, K Holder, D Ibison, MG Jackson, F Jamison, S Johnstone, C Jones, J Jones, L Kalinin, A Keil, E |
author_facet | Machida, S Barlow, R Berg, J Bliss, N Buckley, R Clarke, J Craddock, M D'Arcy, R Edgecock, R Garland, J Giboudot, Y Goudket, P Griffiths, S Hill, C Hill, S Hock, K Holder, D Ibison, MG Jackson, F Jamison, S Johnstone, C Jones, J Jones, L Kalinin, A Keil, E |
author_sort | Machida, S |
collection | OXFORD |
description | In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a 'scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10 mm in radius over an electron momentum range of 12-18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators. © 2012 Macmillan Publishers Limited. All rights reserved. |
first_indexed | 2024-03-06T23:23:15Z |
format | Journal article |
id | oxford-uuid:6981bc2e-5314-45ab-94b1-cf1726d9b775 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T23:23:15Z |
publishDate | 2012 |
record_format | dspace |
spelling | oxford-uuid:6981bc2e-5314-45ab-94b1-cf1726d9b7752022-03-26T18:51:28ZAcceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMAJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:6981bc2e-5314-45ab-94b1-cf1726d9b775EnglishSymplectic Elements at Oxford2012Machida, SBarlow, RBerg, JBliss, NBuckley, RClarke, JCraddock, MD'Arcy, REdgecock, RGarland, JGiboudot, YGoudket, PGriffiths, SHill, CHill, SHock, KHolder, DIbison, MGJackson, FJamison, SJohnstone, CJones, JJones, LKalinin, AKeil, EIn a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a 'scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10 mm in radius over an electron momentum range of 12-18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators. © 2012 Macmillan Publishers Limited. All rights reserved. |
spellingShingle | Machida, S Barlow, R Berg, J Bliss, N Buckley, R Clarke, J Craddock, M D'Arcy, R Edgecock, R Garland, J Giboudot, Y Goudket, P Griffiths, S Hill, C Hill, S Hock, K Holder, D Ibison, MG Jackson, F Jamison, S Johnstone, C Jones, J Jones, L Kalinin, A Keil, E Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA |
title | Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA |
title_full | Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA |
title_fullStr | Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA |
title_full_unstemmed | Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA |
title_short | Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA |
title_sort | acceleration in the linear non scaling fixed field alternating gradient accelerator emma |
work_keys_str_mv | AT machidas accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT barlowr accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT bergj accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT blissn accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT buckleyr accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT clarkej accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT craddockm accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT darcyr accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT edgecockr accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT garlandj accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT giboudoty accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT goudketp accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT griffithss accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT hillc accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT hills accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT hockk accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT holderd accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT ibisonmg accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT jacksonf accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT jamisons accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT johnstonec accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT jonesj accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT jonesl accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT kalinina accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma AT keile accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma |