Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate...

Full description

Bibliographic Details
Main Authors: Machida, S, Barlow, R, Berg, J, Bliss, N, Buckley, R, Clarke, J, Craddock, M, D'Arcy, R, Edgecock, R, Garland, J, Giboudot, Y, Goudket, P, Griffiths, S, Hill, C, Hill, S, Hock, K, Holder, D, Ibison, MG, Jackson, F, Jamison, S, Johnstone, C, Jones, J, Jones, L, Kalinin, A, Keil, E
Format: Journal article
Language:English
Published: 2012
_version_ 1826277063358676992
author Machida, S
Barlow, R
Berg, J
Bliss, N
Buckley, R
Clarke, J
Craddock, M
D'Arcy, R
Edgecock, R
Garland, J
Giboudot, Y
Goudket, P
Griffiths, S
Hill, C
Hill, S
Hock, K
Holder, D
Ibison, MG
Jackson, F
Jamison, S
Johnstone, C
Jones, J
Jones, L
Kalinin, A
Keil, E
author_facet Machida, S
Barlow, R
Berg, J
Bliss, N
Buckley, R
Clarke, J
Craddock, M
D'Arcy, R
Edgecock, R
Garland, J
Giboudot, Y
Goudket, P
Griffiths, S
Hill, C
Hill, S
Hock, K
Holder, D
Ibison, MG
Jackson, F
Jamison, S
Johnstone, C
Jones, J
Jones, L
Kalinin, A
Keil, E
author_sort Machida, S
collection OXFORD
description In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a 'scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10 mm in radius over an electron momentum range of 12-18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators. © 2012 Macmillan Publishers Limited. All rights reserved.
first_indexed 2024-03-06T23:23:15Z
format Journal article
id oxford-uuid:6981bc2e-5314-45ab-94b1-cf1726d9b775
institution University of Oxford
language English
last_indexed 2024-03-06T23:23:15Z
publishDate 2012
record_format dspace
spelling oxford-uuid:6981bc2e-5314-45ab-94b1-cf1726d9b7752022-03-26T18:51:28ZAcceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMAJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:6981bc2e-5314-45ab-94b1-cf1726d9b775EnglishSymplectic Elements at Oxford2012Machida, SBarlow, RBerg, JBliss, NBuckley, RClarke, JCraddock, MD'Arcy, REdgecock, RGarland, JGiboudot, YGoudket, PGriffiths, SHill, CHill, SHock, KHolder, DIbison, MGJackson, FJamison, SJohnstone, CJones, JJones, LKalinin, AKeil, EIn a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a 'scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10 mm in radius over an electron momentum range of 12-18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators. © 2012 Macmillan Publishers Limited. All rights reserved.
spellingShingle Machida, S
Barlow, R
Berg, J
Bliss, N
Buckley, R
Clarke, J
Craddock, M
D'Arcy, R
Edgecock, R
Garland, J
Giboudot, Y
Goudket, P
Griffiths, S
Hill, C
Hill, S
Hock, K
Holder, D
Ibison, MG
Jackson, F
Jamison, S
Johnstone, C
Jones, J
Jones, L
Kalinin, A
Keil, E
Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA
title Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA
title_full Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA
title_fullStr Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA
title_full_unstemmed Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA
title_short Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA
title_sort acceleration in the linear non scaling fixed field alternating gradient accelerator emma
work_keys_str_mv AT machidas accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT barlowr accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT bergj accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT blissn accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT buckleyr accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT clarkej accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT craddockm accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT darcyr accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT edgecockr accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT garlandj accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT giboudoty accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT goudketp accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT griffithss accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT hillc accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT hills accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT hockk accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT holderd accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT ibisonmg accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT jacksonf accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT jamisons accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT johnstonec accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT jonesj accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT jonesl accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT kalinina accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma
AT keile accelerationinthelinearnonscalingfixedfieldalternatinggradientacceleratoremma