Unsupervised learning to understand patterns of comorbidity in 633,330 patients diagnosed with osteoarthritis
With the advent of big data in healthcare, machine learning has rapidly gained popularity due to its potential to analyse large volumes of complex data from a variety of sources. Unsupervised learning can be used to mine data and discover patterns such as sub-groups within large patient populations....
Hauptverfasser: | Pineda Moncusi, M, Strauss, VY, Robinson, DE, Prieto Alhambra, D, Khalid, S |
---|---|
Format: | Conference item |
Sprache: | English |
Veröffentlicht: |
SciTePress
2022
|
Ähnliche Einträge
Ähnliche Einträge
-
Classification of patients with osteoarthritis through clusters of comorbidities using 633,330 individuals from Spain
von: Pineda Moncusi, M, et al.
Veröffentlicht: (2023) -
Evaluation of comorbidity patterns and identification of sub-groups in patients diagnosed with hip osteoarthritis in 94,720 patients from Spain
von: Pineda Moncusi, M, et al.
Veröffentlicht: (2022) -
Risk of comorbidities following physician-diagnosed knee or hip osteoarthritis: a register-based cohort study
von: Dell’Isola, A, et al.
Veröffentlicht: (2022) -
Machine learning for risk factor identification and cardiovascular mortality prediction among patients with osteoporosis
von: Hasheminasab, AH, et al.
Veröffentlicht: (2023) -
RW1 Hospital costs and outcomes of unicompartmental compared to total knee replacement for patients with multiple comorbidities: A population-based study
von: Kolovos, S, et al.
Veröffentlicht: (2019)