Neural probabilistic motor primitives for humanoid control

We focus on the problem of learning a single motor module that can flexibly express a range of behaviors for the control of high-dimensional physically simulated humanoids. To do this, we propose a motor architecture that has the general structure of an inverse model with a latent-variable bottlenec...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Merel, J, Hasenclever, L, Galashov, A, Ahuja, A, Pham, V, Wayne, G, Teh, Y, Heess, N
Aineistotyyppi: Conference item
Julkaistu: 2019