Masked γ-SSL: learning uncertainty estimation via masked image modeling

This work proposes a semantic segmentation network that produces high-quality uncertainty estimates in a single forward pass. We exploit general representations from foundation models and unlabelled datasets through a Masked Image Modeling (MIM) approach, which is robust to augmentation hyper-parame...

Disgrifiad llawn

Manylion Llyfryddiaeth
Prif Awduron: Williams, DSW, Gadd, M, Newman, P, De Martini, D
Fformat: Conference item
Iaith:English
Cyhoeddwyd: IEEE 2024
Disgrifiad
Crynodeb:This work proposes a semantic segmentation network that produces high-quality uncertainty estimates in a single forward pass. We exploit general representations from foundation models and unlabelled datasets through a Masked Image Modeling (MIM) approach, which is robust to augmentation hyper-parameters and simpler than previous techniques. For neural networks used in safety-critical applications, bias in the training data can lead to errors; therefore it is crucial to understand a network’s limitations at run time and act accordingly. To this end, we test our proposed method on a number of test domains including the SAX Segmentation benchmark, which includes labelled test data from dense urban, rural and off-road driving domains. The proposed method consistently outperforms uncertainty estimation and Out-of-Distribution (OoD) techniques on this difficult benchmark.