Masked γ-SSL: learning uncertainty estimation via masked image modeling
This work proposes a semantic segmentation network that produces high-quality uncertainty estimates in a single forward pass. We exploit general representations from foundation models and unlabelled datasets through a Masked Image Modeling (MIM) approach, which is robust to augmentation hyper-parame...
Hlavní autoři: | Williams, DSW, Gadd, M, Newman, P, De Martini, D |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
IEEE
2024
|
Podobné jednotky
-
Mitigating distributional shift in semantic segmentation via uncertainty estimation from unlabeled data
Autor: Williams, DSW, a další
Vydáno: (2024) -
Fool me once: robust selective segmentation via out-of-distribution detection with contrastive learning
Autor: Williams, DSW, a další
Vydáno: (2021) -
Visual masking estimation based on structural uncertainty
Autor: Lin, Weisi, a další
Vydáno: (2013) -
To exploit uncertainty masking for adaptive image rendering
Autor: Dong, Lu, a další
Vydáno: (2013) -
Toward accurate hand mesh estimation via masked image modeling
Autor: Yanli Li, a další
Vydáno: (2025-01-01)