Masked γ-SSL: learning uncertainty estimation via masked image modeling
This work proposes a semantic segmentation network that produces high-quality uncertainty estimates in a single forward pass. We exploit general representations from foundation models and unlabelled datasets through a Masked Image Modeling (MIM) approach, which is robust to augmentation hyper-parame...
Hlavní autoři: | , , , |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
IEEE
2024
|