Specialized minimal PDFs for optimized LHC calculations

We present a methodology for the construction of parton distribution functions (PDFs) designed to provide an accurate representation of PDF uncertainties for specific processes or classes of processes with a minimal number of PDF error sets: specialized minimal PDF sets, or SM-PDFs. We construct the...

Full description

Bibliographic Details
Main Authors: Carrazza, S, Forte, S, Kassabov, Z, Rojo, J
Format: Journal article
Published: Springer Berlin Heidelberg 2016
_version_ 1797073760754335744
author Carrazza, S
Forte, S
Kassabov, Z
Rojo, J
author_facet Carrazza, S
Forte, S
Kassabov, Z
Rojo, J
author_sort Carrazza, S
collection OXFORD
description We present a methodology for the construction of parton distribution functions (PDFs) designed to provide an accurate representation of PDF uncertainties for specific processes or classes of processes with a minimal number of PDF error sets: specialized minimal PDF sets, or SM-PDFs. We construct these SM-PDFs in such a way that sets corresponding to different input processes can be combined without losing information, specifically as regards their correlations, and that they are robust upon smooth variations of the kinematic cuts. The proposed strategy never discards information, so that the SM-PDF sets can be enlarged by the addition of new processes, until the prior PDF set is eventually recovered for a large enough set of processes. We illustrate the method by producing SM-PDFs tailored to Higgs, top-quark pair, and electroweak gauge boson physics, and we determine that, when the PDF4LHC15 combined set is used as the prior, around 11, 4, and 11 Hessian eigenvectors, respectively, are enough to fully describe the corresponding processes.
first_indexed 2024-03-06T23:26:39Z
format Journal article
id oxford-uuid:6a97a171-6a15-4f56-906e-ade214e4b822
institution University of Oxford
last_indexed 2024-03-06T23:26:39Z
publishDate 2016
publisher Springer Berlin Heidelberg
record_format dspace
spelling oxford-uuid:6a97a171-6a15-4f56-906e-ade214e4b8222022-03-26T18:58:29ZSpecialized minimal PDFs for optimized LHC calculationsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:6a97a171-6a15-4f56-906e-ade214e4b822Symplectic Elements at OxfordSpringer Berlin Heidelberg2016Carrazza, SForte, SKassabov, ZRojo, JWe present a methodology for the construction of parton distribution functions (PDFs) designed to provide an accurate representation of PDF uncertainties for specific processes or classes of processes with a minimal number of PDF error sets: specialized minimal PDF sets, or SM-PDFs. We construct these SM-PDFs in such a way that sets corresponding to different input processes can be combined without losing information, specifically as regards their correlations, and that they are robust upon smooth variations of the kinematic cuts. The proposed strategy never discards information, so that the SM-PDF sets can be enlarged by the addition of new processes, until the prior PDF set is eventually recovered for a large enough set of processes. We illustrate the method by producing SM-PDFs tailored to Higgs, top-quark pair, and electroweak gauge boson physics, and we determine that, when the PDF4LHC15 combined set is used as the prior, around 11, 4, and 11 Hessian eigenvectors, respectively, are enough to fully describe the corresponding processes.
spellingShingle Carrazza, S
Forte, S
Kassabov, Z
Rojo, J
Specialized minimal PDFs for optimized LHC calculations
title Specialized minimal PDFs for optimized LHC calculations
title_full Specialized minimal PDFs for optimized LHC calculations
title_fullStr Specialized minimal PDFs for optimized LHC calculations
title_full_unstemmed Specialized minimal PDFs for optimized LHC calculations
title_short Specialized minimal PDFs for optimized LHC calculations
title_sort specialized minimal pdfs for optimized lhc calculations
work_keys_str_mv AT carrazzas specializedminimalpdfsforoptimizedlhccalculations
AT fortes specializedminimalpdfsforoptimizedlhccalculations
AT kassabovz specializedminimalpdfsforoptimizedlhccalculations
AT rojoj specializedminimalpdfsforoptimizedlhccalculations