Backward martingale transport and Fitzpatrick functions in pseudo-Euclidean spaces

We study an optimal transport problem with a backward martingale constraint in a pseudo-Euclidean space S. We show that the dual problem consists in the minimization of the expected values of the Fitzpatrick functions associated with maximal S-monotone sets. An optimal plan γ and an optimal maximal...

Полное описание

Библиографические подробности
Главные авторы: Kramkov, D, Sîrbu, M
Формат: Journal article
Язык:English
Опубликовано: Institute of Mathematical Statistics 2024
_version_ 1826312034013151232
author Kramkov, D
Sîrbu, M
author_facet Kramkov, D
Sîrbu, M
author_sort Kramkov, D
collection OXFORD
description We study an optimal transport problem with a backward martingale constraint in a pseudo-Euclidean space S. We show that the dual problem consists in the minimization of the expected values of the Fitzpatrick functions associated with maximal S-monotone sets. An optimal plan γ and an optimal maximal S-monotone set G are characterized by the condition that the support of γ is contained in the graph of the S-projection on G. For a Gaussian random variable Y, we get a unique decomposition: Y = X + Z , where X and Z are independent Gaussian random variables taking values, respectively, in complementary positive and negative linear subspaces of the S-space.
first_indexed 2024-03-07T08:21:38Z
format Journal article
id oxford-uuid:6ac0c56d-0c37-42b9-aad9-f89c8a34eb96
institution University of Oxford
language English
last_indexed 2024-03-07T08:21:38Z
publishDate 2024
publisher Institute of Mathematical Statistics
record_format dspace
spelling oxford-uuid:6ac0c56d-0c37-42b9-aad9-f89c8a34eb962024-02-05T09:55:08ZBackward martingale transport and Fitzpatrick functions in pseudo-Euclidean spacesJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:6ac0c56d-0c37-42b9-aad9-f89c8a34eb96EnglishSymplectic ElementsInstitute of Mathematical Statistics2024Kramkov, DSîrbu, MWe study an optimal transport problem with a backward martingale constraint in a pseudo-Euclidean space S. We show that the dual problem consists in the minimization of the expected values of the Fitzpatrick functions associated with maximal S-monotone sets. An optimal plan γ and an optimal maximal S-monotone set G are characterized by the condition that the support of γ is contained in the graph of the S-projection on G. For a Gaussian random variable Y, we get a unique decomposition: Y = X + Z , where X and Z are independent Gaussian random variables taking values, respectively, in complementary positive and negative linear subspaces of the S-space.
spellingShingle Kramkov, D
Sîrbu, M
Backward martingale transport and Fitzpatrick functions in pseudo-Euclidean spaces
title Backward martingale transport and Fitzpatrick functions in pseudo-Euclidean spaces
title_full Backward martingale transport and Fitzpatrick functions in pseudo-Euclidean spaces
title_fullStr Backward martingale transport and Fitzpatrick functions in pseudo-Euclidean spaces
title_full_unstemmed Backward martingale transport and Fitzpatrick functions in pseudo-Euclidean spaces
title_short Backward martingale transport and Fitzpatrick functions in pseudo-Euclidean spaces
title_sort backward martingale transport and fitzpatrick functions in pseudo euclidean spaces
work_keys_str_mv AT kramkovd backwardmartingaletransportandfitzpatrickfunctionsinpseudoeuclideanspaces
AT sirbum backwardmartingaletransportandfitzpatrickfunctionsinpseudoeuclideanspaces