Backward martingale transport and Fitzpatrick functions in pseudo-Euclidean spaces
We study an optimal transport problem with a backward martingale constraint in a pseudo-Euclidean space S. We show that the dual problem consists in the minimization of the expected values of the Fitzpatrick functions associated with maximal S-monotone sets. An optimal plan γ and an optimal maximal...
Auteurs principaux: | Kramkov, D, Sîrbu, M |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Institute of Mathematical Statistics
2024
|
Documents similaires
Ideas of space : euclidean, non-euclidean and relativistic /
par: 333972 Gray, Jeremy
Publié: (1979)
par: 333972 Gray, Jeremy
Publié: (1979)
Documents similaires
-
An optimal transport problem with backward martingale constraints motivated by insider trading
par: Kramkov, D, et autres
Publié: (2022) -
Density of the set of probability measures with the martingale representation property
par: Kramkov, D, et autres
Publié: (2019) -
Muckenhoupt’s (Ap) condition and the existence of the optimal martingale measure
par: Kramkov, D, et autres
Publié: (2016) -
Integral representation of martingales motivated by the problem of endogenous completeness in financial economics
par: Kramkov, D, et autres
Publié: (2013) -
The minimality of biharmonic hypersurfaces in pseudo-Euclidean spaces
par: Li Du, et autres
Publié: (2023-01-01)