Computing generators of free modules over orders in group algebras

<p>Let <em>E</em> be a number field and <em>G</em> be a finite group. Let <em>A</em> be any <em>O<sub>E</sub></em>-order of full rank in the group algebra <em>E</em>[<em>G</em>] and <em>X</em> be a...

Full description

Bibliographic Details
Main Authors: Bley, W, Johnston, H
Format: Journal article
Language:English
Published: Elsevier 2008
_version_ 1797073838314356736
author Bley, W
Johnston, H
author_facet Bley, W
Johnston, H
author_sort Bley, W
collection OXFORD
description <p>Let <em>E</em> be a number field and <em>G</em> be a finite group. Let <em>A</em> be any <em>O<sub>E</sub></em>-order of full rank in the group algebra <em>E</em>[<em>G</em>] and <em>X</em> be a (left) <em>A</em>-lattice. We give a necessary and sufficient condition for <em>X</em> to be free of given rank <em>d</em> over <em>A</em>. In the case that the Wedderburn decomposition <em>E</em>[<em>G</em>]and#8773;and#8853;<sub>χ</sub><em>M</em>χ is explicitly computable and each <em>M</em><sub>χ</sub> is in fact a matrix ring over a field, this leads to an algorithm that either gives elements α<sub>1</sub>,…,α<sub>d</sub>∈<em>X</em> such that <em>X</em>=<em>A</em>α<sub>1</sub>and#8853;<sup>...</sup>and#8853;<em>A</em>α<sub>d</sub> or determines that no such elements exist.</p> <p>Let <em>L/K</em> be a finite Galois extension of number fields with Galois group <em>G</em> such that <em>E</em> is a subfield of <em>K</em> and put <em>d</em>=[<em>K</em>:<em>E</em>]. The algorithm can be applied to certain Galois modules that arise naturally in this situation. For example, one can take <em>X</em> to be <em>O</em><sub>L</sub>, the ring of algebraic integers of <em>L</em>, and <em>A</em> to be the associated order <em>A</em>(<em>E</em>[<em>G</em>];<em>O</em><sub>L</sub>)⊆<em>E</em>[<em>G</em>]. The application of the algorithm to this special situation is implemented in Magma under certain extra hypotheses when <em>K</em>=<em>E</em>=<em>Q</em>.</p>
first_indexed 2024-03-06T23:27:46Z
format Journal article
id oxford-uuid:6afd47cf-07e0-4ee2-bc9d-9419cf69f010
institution University of Oxford
language English
last_indexed 2024-03-06T23:27:46Z
publishDate 2008
publisher Elsevier
record_format dspace
spelling oxford-uuid:6afd47cf-07e0-4ee2-bc9d-9419cf69f0102022-03-26T19:00:53ZComputing generators of free modules over orders in group algebrasJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:6afd47cf-07e0-4ee2-bc9d-9419cf69f010EnglishSymplectic Elements at OxfordElsevier2008Bley, WJohnston, H<p>Let <em>E</em> be a number field and <em>G</em> be a finite group. Let <em>A</em> be any <em>O<sub>E</sub></em>-order of full rank in the group algebra <em>E</em>[<em>G</em>] and <em>X</em> be a (left) <em>A</em>-lattice. We give a necessary and sufficient condition for <em>X</em> to be free of given rank <em>d</em> over <em>A</em>. In the case that the Wedderburn decomposition <em>E</em>[<em>G</em>]and#8773;and#8853;<sub>χ</sub><em>M</em>χ is explicitly computable and each <em>M</em><sub>χ</sub> is in fact a matrix ring over a field, this leads to an algorithm that either gives elements α<sub>1</sub>,…,α<sub>d</sub>∈<em>X</em> such that <em>X</em>=<em>A</em>α<sub>1</sub>and#8853;<sup>...</sup>and#8853;<em>A</em>α<sub>d</sub> or determines that no such elements exist.</p> <p>Let <em>L/K</em> be a finite Galois extension of number fields with Galois group <em>G</em> such that <em>E</em> is a subfield of <em>K</em> and put <em>d</em>=[<em>K</em>:<em>E</em>]. The algorithm can be applied to certain Galois modules that arise naturally in this situation. For example, one can take <em>X</em> to be <em>O</em><sub>L</sub>, the ring of algebraic integers of <em>L</em>, and <em>A</em> to be the associated order <em>A</em>(<em>E</em>[<em>G</em>];<em>O</em><sub>L</sub>)⊆<em>E</em>[<em>G</em>]. The application of the algorithm to this special situation is implemented in Magma under certain extra hypotheses when <em>K</em>=<em>E</em>=<em>Q</em>.</p>
spellingShingle Bley, W
Johnston, H
Computing generators of free modules over orders in group algebras
title Computing generators of free modules over orders in group algebras
title_full Computing generators of free modules over orders in group algebras
title_fullStr Computing generators of free modules over orders in group algebras
title_full_unstemmed Computing generators of free modules over orders in group algebras
title_short Computing generators of free modules over orders in group algebras
title_sort computing generators of free modules over orders in group algebras
work_keys_str_mv AT bleyw computinggeneratorsoffreemodulesoverordersingroupalgebras
AT johnstonh computinggeneratorsoffreemodulesoverordersingroupalgebras