Cerebral calpain in fatal falciparum malaria.

Disruption of axonal transport may represent a final common pathway leading to neurological dysfunction in cerebral malaria (CM). Calpains are calcium (Ca2+)-activated cysteine proteases which have been implicated in axonal injury in neurological diseases of various aetiologies. In this study we exa...

Full description

Bibliographic Details
Main Authors: Medana, I, Day, N, Hien, T, Mai, N, Bethell, D, Phu, N, Turner, G, Farrar, J, White, N, Esiri, M
Format: Journal article
Language:English
Published: 2007
Description
Summary:Disruption of axonal transport may represent a final common pathway leading to neurological dysfunction in cerebral malaria (CM). Calpains are calcium (Ca2+)-activated cysteine proteases which have been implicated in axonal injury in neurological diseases of various aetiologies. In this study we examined the association between mu- and m-calpain, the specific inhibitor calpastatin, and axonal injury in post mortem brain tissue from patients who died from severe malaria. Calpains were associated with axons labelled for the beta-amyloid precursor protein that detects impaired axonal transport. Elevated levels of calpastatin were rarely observed in injured axons. There were increased numbers of neurones with mu-calpain in the nuclear compartment in severe malaria cases compared with non-neurological controls, and increased numbers of glia with nuclear mu-calpain in CM patients compared with non-CM malaria cases and non-neurological controls. There was marked redistribution of calpastatin in the sequestered Plasmodium falciparum-infected erythrocytes. Responses specific to malaria infection were ascertained following analysis of brain samples from fatal cases with acute axonal injury, HIV encephalitis, and progressive multifocal leucoencephalopathy. Our findings implicate a role for calpains in the modulation of disease progression in CM.