Breaking the deadly triad with a target network

The deadly triad refers to the instability of a reinforcement learning algorithm when it employs off-policy learning, function approximation, and bootstrapping simultaneously. In this paper, we investigate the target network as a tool for breaking the deadly triad, providing theoretical support for...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Zhang, S, Yao, H, Whiteson, S
Aineistotyyppi: Conference item
Kieli:English
Julkaistu: PMLR 2021

Samankaltaisia teoksia