Maximum likelihood estimation of a multidimensional log-concave density
Let X_1, ..., X_n be independent and identically distributed random vectors with a log-concave (Lebesgue) density f. We first prove that, with probability one, there exists a unique maximum likelihood estimator of f. The use of this estimator is attractive because, unlike kernel density estimation,...
Auteurs principaux: | Cule, M, Samworth, R, Stewart, M |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Blackwell Publishing Ltd
2008
|
Documents similaires
Maximum likelihood estimation for social network dynamics
par: Koskinen, J, et autres
Publié: (2010)
par: Koskinen, J, et autres
Publié: (2010)
Maximum Likelihood Estimation for Social Network Dynamics
par: Snijders, T, et autres
Publié: (2010)
par: Snijders, T, et autres
Publié: (2010)
Documents similaires
-
Theoretical properties of the log-concave maximum likelihood estimator
of a multidimensional density
par: Cule, M, et autres
Publié: (2009) -
LogConcDEAD: An R Package for Maximum Likelihood Estimation of a Multivariate Log-Concave Density
par: Cule, M, et autres
Publié: (2009) -
LogConcDEAD: An R Package for Maximum Likelihood Estimation of a Multivariate Log-Concave Density
par: Madeleine Cule, et autres
Publié: (2008-12-01) -
Maximum Likelihood Estimation for Totally Positive Log‐Concave Densities
par: Robeva, Elina, et autres
Publié: (2021) -
A new computational framework for log-concave density estimation
par: Chen, Wenyu, et autres
Publié: (2024)