Invariable generation of the symmetric group
We say that permutations π1, ..., πr ∈ Sn invariably generate Sn if, no matter how one chooses conjugates π′1, ..., π′r of these permutations, π′1, ..., π′r generate Sn. We show that if π1, π2, π3 are chosen randomly from Sn then, with probability tending to 1 as n → ∞, they do not invariably genera...
Hlavní autoři: | Green, B, Eberhard, S, Ford, K |
---|---|
Médium: | Journal article |
Vydáno: |
Duke University Press
2017
|
Podobné jednotky
-
Invariants in Non-Commutative Variables of the Symmetric and Hyperoctahedral Groups
Autor: Anouk Bergeron-Brlek
Vydáno: (2008-01-01) -
The Bruhat order on conjugation-invariant sets of involutions in the symmetric group
Autor: Mikael Hansson
Vydáno: (2015-01-01) -
Symmetric function theory and unitary invariant ensembles
Autor: Jonnadula, B, a další
Vydáno: (2021) -
Invariance properties for coefficients of symmetric functions
Autor: Emmanuel Briand, a další
Vydáno: (2015-01-01) -
Invariable generation of groups of finite rank
Autor: Eloisa Detomi, a další
Vydáno: (2018-12-01)