Invariable generation of the symmetric group
We say that permutations π1, ..., πr ∈ Sn invariably generate Sn if, no matter how one chooses conjugates π′1, ..., π′r of these permutations, π′1, ..., π′r generate Sn. We show that if π1, π2, π3 are chosen randomly from Sn then, with probability tending to 1 as n → ∞, they do not invariably genera...
Główni autorzy: | Green, B, Eberhard, S, Ford, K |
---|---|
Format: | Journal article |
Wydane: |
Duke University Press
2017
|
Podobne zapisy
-
Invariants in Non-Commutative Variables of the Symmetric and Hyperoctahedral Groups
od: Anouk Bergeron-Brlek
Wydane: (2008-01-01) -
The Bruhat order on conjugation-invariant sets of involutions in the symmetric group
od: Mikael Hansson
Wydane: (2015-01-01) -
Symmetric function theory and unitary invariant ensembles
od: Jonnadula, B, i wsp.
Wydane: (2021) -
Invariance properties for coefficients of symmetric functions
od: Emmanuel Briand, i wsp.
Wydane: (2015-01-01) -
Invariable generation of groups of finite rank
od: Eloisa Detomi, i wsp.
Wydane: (2018-12-01)