Invariable generation of the symmetric group
We say that permutations π1, ..., πr ∈ Sn invariably generate Sn if, no matter how one chooses conjugates π′1, ..., π′r of these permutations, π′1, ..., π′r generate Sn. We show that if π1, π2, π3 are chosen randomly from Sn then, with probability tending to 1 as n → ∞, they do not invariably genera...
Main Authors: | Green, B, Eberhard, S, Ford, K |
---|---|
格式: | Journal article |
出版: |
Duke University Press
2017
|
相似書籍
-
Invariants in Non-Commutative Variables of the Symmetric and Hyperoctahedral Groups
由: Anouk Bergeron-Brlek
出版: (2008-01-01) -
The Bruhat order on conjugation-invariant sets of involutions in the symmetric group
由: Mikael Hansson
出版: (2015-01-01) -
Symmetric function theory and unitary invariant ensembles
由: Jonnadula, B, et al.
出版: (2021) -
Invariance properties for coefficients of symmetric functions
由: Emmanuel Briand, et al.
出版: (2015-01-01) -
Invariable generation of groups of finite rank
由: Eloisa Detomi, et al.
出版: (2018-12-01)