Control of bifurcation structures using shape optimization

Many problems in engineering can be understood as controlling the bifurcation structure of a given device. For example, one may wish to delay the onset of instability or bring forward a bifurcation to enable rapid switching between states. We propose a numerical technique for controlling the bifurca...

Celý popis

Podrobná bibliografie
Hlavní autoři: Boullé, N, Farrell, PE, Paganini, A
Médium: Journal article
Jazyk:English
Vydáno: Society for Industrial and Applied Mathematics 2022
Popis
Shrnutí:Many problems in engineering can be understood as controlling the bifurcation structure of a given device. For example, one may wish to delay the onset of instability or bring forward a bifurcation to enable rapid switching between states. We propose a numerical technique for controlling the bifurcation diagram of a nonlinear partial differential equation by varying the shape of the domain. Specifically, we are able to delay or advance a given branch point to a target parameter value. The algorithm consists of solving a shape optimization problem constrained by an augmented system of equations, the Moore--Spence system, that characterize the location of the branch points. Numerical experiments on the Allen--Cahn, Navier--Stokes, and hyperelasticity equations demonstrate the effectiveness of this technique in a wide range of settings.