Solution landscapes in nematic microfluidics
We study the static equilibria of a simplified Leslie–Ericksen model for a unidirectional uniaxial nematic flow in a prototype microfluidic channel, as a function of the pressure gradient G and inverse anchoring strength, B. We numerically find multiple static equilibria for admissible pairs (G, B)...
Những tác giả chính: | , , , |
---|---|
Định dạng: | Journal article |
Được phát hành: |
Elsevier
2017
|
Tóm tắt: | We study the static equilibria of a simplified Leslie–Ericksen model for a unidirectional uniaxial nematic flow in a prototype microfluidic channel, as a function of the pressure gradient G and inverse anchoring strength, B. We numerically find multiple static equilibria for admissible pairs (G, B) and classify them according to their winding numbers and stability. The case G = 0 is analytically tractable and we numerically study how the solution landscape is transformed as G increases. We study the one-dimensional dynamical model, the sensitivity of the dynamic solutions to initial conditions and the rate of change of G and B. We provide a physically interesting example of how the time delay between the applications of G and B can determine the selection of the final steady state. |
---|