Dynamic buckling of morphoelastic filaments
The equilibrium shapes of biological structures as diverse as plant tendrils and bacterial filaments can be altered by externally imposed stresses of sufficient duration. We study the simplest model for this morphoelasticity-a filament whose intrinsic curvatures relax to the local curvatures-and ill...
Main Authors: | , |
---|---|
Format: | Journal article |
Sprog: | English |
Udgivet: |
2006
|
Summary: | The equilibrium shapes of biological structures as diverse as plant tendrils and bacterial filaments can be altered by externally imposed stresses of sufficient duration. We study the simplest model for this morphoelasticity-a filament whose intrinsic curvatures relax to the local curvatures-and illustrate its properties in the context of dynamic Euler buckling and writhing. When a thrust or twist is ramped in time the effective elastic properties of the filament depend on the load rate. Slow ramps interrupted by removal of the external forces can leave in equilibrium any of a whole continuum of buckled shapes. Morphoelastic relaxation can also allow a filament to bypass a bifurcation. © 2006 The American Physical Society. |
---|