Characterising anti-osteoporosis drug users in real world primary care settings in Spain: A data-driven cluster analysis
We attempted to characterize the population of anti-osteoporosis drug users by determining groups of patients with similar features.
Autori principali: | Khalid, S, Ali, M, Silman, A, Prieto-Alhambra, D |
---|---|
Natura: | Conference item |
Pubblicazione: |
Springer
2017
|
Documenti analoghi
Documenti analoghi
-
Sub-groups of anti-osteoporosis drug users, and associated fracture risk in real world primary care settings: a data-driven cluster analysis
di: Khalid, S, et al.
Pubblicazione: (2017) -
Data-driven cluster analysis for identifying groups within users of anti-osteoporosis medication, using real-world primary care data.
di: Khalid, S, et al.
Pubblicazione: (2017) -
Deep learning to detect features of a population of anti-osteoporosis drug users
di: Khalid, S, et al.
Pubblicazione: (2018) -
Comparative anti-fracture effectiveness of different anti-osteoporosis medications amongst male drug users in real world clinical practice: a population-based cohort study
di: Zwart, M, et al.
Pubblicazione: (2016) -
Deep learning for drug utilisation research: Identifying features within a population of anti-osteoporosis drug users
di: Khalid, S, et al.
Pubblicazione: (2018)