Adjusting the neuroimaging statistical inferences for nonstationarity.
In neuroimaging cluster-based inference has generally been found to be more powerful than voxel-wise inference. However standard cluster-based methods assume stationarity (constant smoothness), while under nonstationarity clusters are larger in smooth regions just by chance, making false positive ri...
Hlavní autoři: | Salimi-Khorshidi, G, Smith, S, Nichols, T |
---|---|
Médium: | Conference item |
Vydáno: |
2009
|
Podobné jednotky
-
Adjusting the neuroimaging statistical inferences for nonstationarity.
Autor: Salimi-Khorshidi, G, a další
Vydáno: (2009) -
Adjusting the neuroimaging statistical inferences for nonstationarity.
Autor: Salimi-Khorshidi, G, a další
Vydáno: (2009) -
Adjusting the effect of nonstationarity in cluster-based and TFCE inference.
Autor: Salimi-Khorshidi, G, a další
Vydáno: (2011) -
Statistical models for neuroimaging meta-analytic inference
Autor: Salimi-Khorshidi, G
Vydáno: (2011) -
Using Gaussian-process regression for meta-analytic neuroimaging inference based on sparse observations.
Autor: Salimi-Khorshidi, G, a další
Vydáno: (2011)