Numerical interactions of random and directed motility during cancer invasion
The continuum modelling of cell migration during cancer invasion results in the coupling of parabolic and hyperbolic partial differential equations (PDEs) arising from the random motility of normal tissue and the directed movement up substrate gradients of malignant cells. The numerical solution of...
Main Authors: | Perumpanani, A, Norbury, J |
---|---|
Format: | Journal article |
Language: | English |
Published: |
1999
|
Similar Items
-
Traveling shock waves arising in a model of malignant invasion
by: Marchant, B, et al.
Published: (2000) -
Biological inferences from a mathematical model for malignant invasion.
by: Perumpanani, A, et al.
Published: (1996) -
A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion
by: Perumpanani, A, et al.
Published: (1999) -
Mathematical modelling of capsule formation and multinodularity in benign tumour growth
by: Perumpanani, A, et al.
Published: (1997) -
Tetraploidization Increases the Motility and Invasiveness of Cancer Cells
by: Mohamed Jemaà, et al.
Published: (2023-09-01)