Sono-electroanalysis of copper: enhanced detection and determination in the presence of surfactants.

Surfactant adsorption has been shown to have a passivating effect on the electrode surface during anodic stripping voltammetric measurements. In the present work the feasibility of sono-anodic stripping analysis for the determination of copper in aqueous media contaminated with surfactant has been s...

Full description

Bibliographic Details
Main Authors: Hardcastle, J, Hignett, G, Melville, J, Compton, R
Format: Journal article
Language:English
Published: 2002
Description
Summary:Surfactant adsorption has been shown to have a passivating effect on the electrode surface during anodic stripping voltammetric measurements. In the present work the feasibility of sono-anodic stripping analysis for the determination of copper in aqueous media contaminated with surfactant has been studied at an unmodified bare glassy carbon electrode. We illustrate the deleterious effect of three common surfactants, sodium dodecyl sulfate (SDS), dodecyl pyridinium chloride (DPC) and Triton-X 100 (TX-100) on conventional electroanalysis. The analogous sono-electroanalytical response was investigated for each surfactant at ultrasound intensities above and below the cavitation threshold. The enhancement in the stripping signal observed is attributed to the increased mass transport due to acoustic streaming and above the cavitation threshold the intensity of cavitational events is significantly increased leading to shearing of adsorbed surfactant molecules from the surface. As a result accurate analyses for SDS concentrations up to 100 ppm are possible, with analytical signals visible in solutions of SDS and TX-100 of 1000 ppm. Analysis is reported in high concentration of surfactant with use of sono-solvent double extraction. The power of this technique is clearly illustrated by the ability to obtain accurate measurements of copper concentration from starting solutions containing 1000 ppm SDS or TX-100. This was also exemplified by analysis of the low concentration 0.3 microM Cu(II) solution giving a percentage recovery of 94% in the presence of 1000 ppm SDS or TX-100.