Towards monocular vision based obstacle avoidance through deep reinforcement learning
Obstacle avoidance is a fundamental requirement for autonomous robots which operate in, and interact with, the real world. When perception is limited to monocular vision avoiding collision becomes significantly more challenging due to the lack of 3D information. Conventional path planners for obstac...
Huvudupphovsmän: | Xie, L, Wang, S, Trigoni, N, Markham, A |
---|---|
Materialtyp: | Conference item |
Språk: | English |
Publicerad: |
2017
|
Liknande verk
Liknande verk
-
Monocular Vision-Based Obstacle Detection and Avoidance for a Multicopter
av: Hsiang-Chieh Chen
Publicerad: (2019-01-01) -
Vision Based Drone Obstacle Avoidance by Deep Reinforcement Learning
av: Zhihan Xue, et al.
Publicerad: (2021-08-01) -
Learning-based monocular vision obstacle detection and avoidance for UAV navigation in urban airspace
av: Zhang, Yuhang
Publicerad: (2023) -
ROSEBUD: A Deep Fluvial Segmentation Dataset for Monocular Vision-Based River Navigation and Obstacle Avoidance
av: Reeve Lambert, et al.
Publicerad: (2022-06-01) -
A Monocular Vision Obstacle Avoidance Method Applied to Indoor Tracking Robot
av: Shubo Wang, et al.
Publicerad: (2021-09-01)