Towards monocular vision based obstacle avoidance through deep reinforcement learning
Obstacle avoidance is a fundamental requirement for autonomous robots which operate in, and interact with, the real world. When perception is limited to monocular vision avoiding collision becomes significantly more challenging due to the lack of 3D information. Conventional path planners for obstac...
Hlavní autoři: | Xie, L, Wang, S, Trigoni, N, Markham, A |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
2017
|
Podobné jednotky
-
Monocular Vision-Based Obstacle Detection and Avoidance for a Multicopter
Autor: Hsiang-Chieh Chen
Vydáno: (2019-01-01) -
Vision Based Drone Obstacle Avoidance by Deep Reinforcement Learning
Autor: Zhihan Xue, a další
Vydáno: (2021-08-01) -
Learning-based monocular vision obstacle detection and avoidance for UAV navigation in urban airspace
Autor: Zhang, Yuhang
Vydáno: (2023) -
ROSEBUD: A Deep Fluvial Segmentation Dataset for Monocular Vision-Based River Navigation and Obstacle Avoidance
Autor: Reeve Lambert, a další
Vydáno: (2022-06-01) -
A Monocular Vision Obstacle Avoidance Method Applied to Indoor Tracking Robot
Autor: Shubo Wang, a další
Vydáno: (2021-09-01)