Towards monocular vision based obstacle avoidance through deep reinforcement learning
Obstacle avoidance is a fundamental requirement for autonomous robots which operate in, and interact with, the real world. When perception is limited to monocular vision avoiding collision becomes significantly more challenging due to the lack of 3D information. Conventional path planners for obstac...
Автори: | Xie, L, Wang, S, Trigoni, N, Markham, A |
---|---|
Формат: | Conference item |
Мова: | English |
Опубліковано: |
2017
|
Схожі ресурси
Схожі ресурси
-
Monocular Vision-Based Obstacle Detection and Avoidance for a Multicopter
за авторством: Hsiang-Chieh Chen
Опубліковано: (2019-01-01) -
Vision Based Drone Obstacle Avoidance by Deep Reinforcement Learning
за авторством: Zhihan Xue, та інші
Опубліковано: (2021-08-01) -
Learning-based monocular vision obstacle detection and avoidance for UAV navigation in urban airspace
за авторством: Zhang, Yuhang
Опубліковано: (2023) -
ROSEBUD: A Deep Fluvial Segmentation Dataset for Monocular Vision-Based River Navigation and Obstacle Avoidance
за авторством: Reeve Lambert, та інші
Опубліковано: (2022-06-01) -
A Monocular Vision Obstacle Avoidance Method Applied to Indoor Tracking Robot
за авторством: Shubo Wang, та інші
Опубліковано: (2021-09-01)