Studies on enzymes mechanism and selectivity using synthetic substrate analogues

<p>Organic chemistry is a valuable tool for studying enzyme mechanisms. Upon incubation with a specific enzyme, synthetic substrate analogues labeled with heavy atoms or carrying extra functional groups can provide mechanistic insights. In the present work, new compounds were synthesised in or...

Full description

Bibliographic Details
Main Author: Henry, L
Other Authors: Schofield, C
Format: Thesis
Language:English
Published: 2012
Subjects:
_version_ 1826307318976872448
author Henry, L
author2 Schofield, C
author_facet Schofield, C
Henry, L
author_sort Henry, L
collection OXFORD
description <p>Organic chemistry is a valuable tool for studying enzyme mechanisms. Upon incubation with a specific enzyme, synthetic substrate analogues labeled with heavy atoms or carrying extra functional groups can provide mechanistic insights. In the present work, new compounds were synthesised in order to study the mechanism and substrate selectivity of two enzymes: human γ-butyrobetaine hydroxylase and bacterial carboxymethylproline synthase.</p><p>γ-Butyrobetaine hydroxylase (BBOX) is an Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase that catalyses the stereospecific hydroxylation of γ-butyrobetaine, the final step of L-carnitine (L-Car) biosynthesis in mammals. Substrate analogues were synthesised to probe BBOX specificity <em>in vitro</em>. Some of those unnatural substrates were oxidised by BBOX and the products identified using a range of analytical techniques. 3-(2,2,2-Trimethylhydrazinium)propionate (THP) is a clinically used BBOX inhibitor. Under standard assay conditions, THP was oxidised by BBOX. NMR studies have identified the products of this reaction to be malonic acid semialdehyde, formaldehyde, dimethylamine and 3-amino-4-(methylamino)butanoic acid. The formation of 3-amino-4-(methylamino)butanoic acid suggests that BBOX can catalyse a Stevens type rearrangement involving N-N bond cleavage and C-C bond formation. The proposed structures and mechanisms were confirmed by mass spectrometric and NMR analyses using [<sup>13</sup>C]-labeled THP as well as synthetic standards of both enantiomers of 3-amino-4-(methylamino)butanoic acid. Although the structure of the rearrangement product was confirmed, the stereochemistry remains unknown. Altogether, these studies revealed the unprecedented nature of a BBOX-catalysed C–C bond formation reaction upon THP oxidation and may inspire the design of improved inhibitors for BBOX and other 2OG oxygenases.</p><p><em>Pectobacterium carotovorum</em> CarB and <em>Streptomyces cattleya</em> ThnE are two carboxymethylproline synthases (CMPS) that catalyse an early step in carbapenem antibiotics biosynthesis. CMPS produces (2S,5S)-carboxymethylproline (t-CMP) from malonyl-CoA and L-glutamate semi-aldehyde. L-Glutamate semi-aldehyde exists in equilibrium with L-5-hydroxyproline and L-pyrroline-5-carboxylate in solution (collectively abbreviated L-GHP). Because of the high stereoselectivity of t-CMP formation and the growing interest in novel carbapenem antibiotics, CMPS is potentially an interesting biocatalyst. A series of L-GHP analogues were synthesised and tested as CMPS substrates in an attempt to produce unnatural t-CMP derivatives enzymatically. Methyl-substituted L-GHP analogues were accepted by CMPS and the t-CMP products could be further carried through to the corresponding bicyclic carbapenams using CarA, a β-lactam synthetase. These results demonstrate the versatility of the early carbapenem biosynthetic pathway and the possibility of introducing structural diversity using synthetic substrate analogues. A crystal structure of <em>S. cattleya</em> ThnE was obtained in complex with L-proline and coenzyme A, giving the first insight into substrate binding. This structural information will potentially allow further rational mutagenesis studies aiming to broaden the range of unnatural L-GHP analogues accepted by CMPS.</p>
first_indexed 2024-03-07T07:01:25Z
format Thesis
id oxford-uuid:724f92a5-891c-4269-961b-9c340a504ddd
institution University of Oxford
language English
last_indexed 2024-03-07T07:01:25Z
publishDate 2012
record_format dspace
spelling oxford-uuid:724f92a5-891c-4269-961b-9c340a504ddd2022-03-29T17:17:17ZStudies on enzymes mechanism and selectivity using synthetic substrate analoguesThesishttp://purl.org/coar/resource_type/c_db06uuid:724f92a5-891c-4269-961b-9c340a504dddChemical biologyEnglishOxford University Research Archive - Valet2012Henry, LSchofield, C<p>Organic chemistry is a valuable tool for studying enzyme mechanisms. Upon incubation with a specific enzyme, synthetic substrate analogues labeled with heavy atoms or carrying extra functional groups can provide mechanistic insights. In the present work, new compounds were synthesised in order to study the mechanism and substrate selectivity of two enzymes: human γ-butyrobetaine hydroxylase and bacterial carboxymethylproline synthase.</p><p>γ-Butyrobetaine hydroxylase (BBOX) is an Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase that catalyses the stereospecific hydroxylation of γ-butyrobetaine, the final step of L-carnitine (L-Car) biosynthesis in mammals. Substrate analogues were synthesised to probe BBOX specificity <em>in vitro</em>. Some of those unnatural substrates were oxidised by BBOX and the products identified using a range of analytical techniques. 3-(2,2,2-Trimethylhydrazinium)propionate (THP) is a clinically used BBOX inhibitor. Under standard assay conditions, THP was oxidised by BBOX. NMR studies have identified the products of this reaction to be malonic acid semialdehyde, formaldehyde, dimethylamine and 3-amino-4-(methylamino)butanoic acid. The formation of 3-amino-4-(methylamino)butanoic acid suggests that BBOX can catalyse a Stevens type rearrangement involving N-N bond cleavage and C-C bond formation. The proposed structures and mechanisms were confirmed by mass spectrometric and NMR analyses using [<sup>13</sup>C]-labeled THP as well as synthetic standards of both enantiomers of 3-amino-4-(methylamino)butanoic acid. Although the structure of the rearrangement product was confirmed, the stereochemistry remains unknown. Altogether, these studies revealed the unprecedented nature of a BBOX-catalysed C–C bond formation reaction upon THP oxidation and may inspire the design of improved inhibitors for BBOX and other 2OG oxygenases.</p><p><em>Pectobacterium carotovorum</em> CarB and <em>Streptomyces cattleya</em> ThnE are two carboxymethylproline synthases (CMPS) that catalyse an early step in carbapenem antibiotics biosynthesis. CMPS produces (2S,5S)-carboxymethylproline (t-CMP) from malonyl-CoA and L-glutamate semi-aldehyde. L-Glutamate semi-aldehyde exists in equilibrium with L-5-hydroxyproline and L-pyrroline-5-carboxylate in solution (collectively abbreviated L-GHP). Because of the high stereoselectivity of t-CMP formation and the growing interest in novel carbapenem antibiotics, CMPS is potentially an interesting biocatalyst. A series of L-GHP analogues were synthesised and tested as CMPS substrates in an attempt to produce unnatural t-CMP derivatives enzymatically. Methyl-substituted L-GHP analogues were accepted by CMPS and the t-CMP products could be further carried through to the corresponding bicyclic carbapenams using CarA, a β-lactam synthetase. These results demonstrate the versatility of the early carbapenem biosynthetic pathway and the possibility of introducing structural diversity using synthetic substrate analogues. A crystal structure of <em>S. cattleya</em> ThnE was obtained in complex with L-proline and coenzyme A, giving the first insight into substrate binding. This structural information will potentially allow further rational mutagenesis studies aiming to broaden the range of unnatural L-GHP analogues accepted by CMPS.</p>
spellingShingle Chemical biology
Henry, L
Studies on enzymes mechanism and selectivity using synthetic substrate analogues
title Studies on enzymes mechanism and selectivity using synthetic substrate analogues
title_full Studies on enzymes mechanism and selectivity using synthetic substrate analogues
title_fullStr Studies on enzymes mechanism and selectivity using synthetic substrate analogues
title_full_unstemmed Studies on enzymes mechanism and selectivity using synthetic substrate analogues
title_short Studies on enzymes mechanism and selectivity using synthetic substrate analogues
title_sort studies on enzymes mechanism and selectivity using synthetic substrate analogues
topic Chemical biology
work_keys_str_mv AT henryl studiesonenzymesmechanismandselectivityusingsyntheticsubstrateanalogues