Changes in brain Glx in depressed bipolar patients treated with lamotrigine: a proton MRS study

<strong>Background</strong> Lamotrigine is a useful treatment in bipolar depression but requires several weeks of dose titration before its clinical effects can be assessed. Animal experimental studies suggest that lamotrigine lowers glutamate release. The aim of the current study was to...

Full description

Bibliographic Details
Main Authors: Godlewska, B, Emir, U, Masaki, C, Bargiotas, T, Cowen, P
Format: Journal article
Language:English
Published: Elsevier 2018
_version_ 1797075517270130688
author Godlewska, B
Emir, U
Masaki, C
Bargiotas, T
Cowen, P
author_facet Godlewska, B
Emir, U
Masaki, C
Bargiotas, T
Cowen, P
author_sort Godlewska, B
collection OXFORD
description <strong>Background</strong> Lamotrigine is a useful treatment in bipolar depression but requires several weeks of dose titration before its clinical effects can be assessed. Animal experimental studies suggest that lamotrigine lowers glutamate release. The aim of the current study was to assess the effect of lamotrigine on brain glutamate in depressed bipolar patients and to determine whether baseline glutamate could be used to predict clinical response. <br/><br/> <strong>Methods</strong> We studied 21 bipolar patients who received lamotrigine treatment for a current episode of depression. Before starting lamotrigine and after 10–12 weeks treatment, patients underwent proton magnetic resonance spectroscopy (MRS) scanning at 3 Tesla where levels of glutamate (measured as Glx) were determined in anterior cingulate cortex (ACC). <br/><br/> <strong>Results</strong> Overall, lamotrigine treatment had no significant effect on Glx levels in ACC. However, in patients who responded clinically to lamotrigine treatment Glx concentrations were significantly increased. Baseline levels of Glx did not predict response to lamotrigine. <br/><br/> <strong>Limitations</strong> The main limitation of the study was the modest sample size. Most patients were medicated which may have modified the effect of lamotrigine on glutamate activity. MRS at 3T cannot give a reliable estimate of glutamate separate from its main metabolite, glutamine, and thus changes in Glx may not give a precise estimate of effects of lamotrigine on glutamate itself. <br/><br/> <strong>Conclusion</strong> Lamotrigine does not appear to have a direct effect on glutamate levels in ACC in bipolar patients. However, therapeutic improvement during lamotrigine was associated with increased Glx, suggesting that alterations in glutamatergic activity might be related to recovery from bipolar depression.
first_indexed 2024-03-06T23:51:24Z
format Journal article
id oxford-uuid:72b8da95-4899-4f2a-a4d7-61d0fe03d8d4
institution University of Oxford
language English
last_indexed 2024-03-06T23:51:24Z
publishDate 2018
publisher Elsevier
record_format dspace
spelling oxford-uuid:72b8da95-4899-4f2a-a4d7-61d0fe03d8d42022-03-26T19:51:58ZChanges in brain Glx in depressed bipolar patients treated with lamotrigine: a proton MRS studyJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:72b8da95-4899-4f2a-a4d7-61d0fe03d8d4EnglishSymplectic Elements at OxfordElsevier2018Godlewska, BEmir, UMasaki, CBargiotas, TCowen, P<strong>Background</strong> Lamotrigine is a useful treatment in bipolar depression but requires several weeks of dose titration before its clinical effects can be assessed. Animal experimental studies suggest that lamotrigine lowers glutamate release. The aim of the current study was to assess the effect of lamotrigine on brain glutamate in depressed bipolar patients and to determine whether baseline glutamate could be used to predict clinical response. <br/><br/> <strong>Methods</strong> We studied 21 bipolar patients who received lamotrigine treatment for a current episode of depression. Before starting lamotrigine and after 10–12 weeks treatment, patients underwent proton magnetic resonance spectroscopy (MRS) scanning at 3 Tesla where levels of glutamate (measured as Glx) were determined in anterior cingulate cortex (ACC). <br/><br/> <strong>Results</strong> Overall, lamotrigine treatment had no significant effect on Glx levels in ACC. However, in patients who responded clinically to lamotrigine treatment Glx concentrations were significantly increased. Baseline levels of Glx did not predict response to lamotrigine. <br/><br/> <strong>Limitations</strong> The main limitation of the study was the modest sample size. Most patients were medicated which may have modified the effect of lamotrigine on glutamate activity. MRS at 3T cannot give a reliable estimate of glutamate separate from its main metabolite, glutamine, and thus changes in Glx may not give a precise estimate of effects of lamotrigine on glutamate itself. <br/><br/> <strong>Conclusion</strong> Lamotrigine does not appear to have a direct effect on glutamate levels in ACC in bipolar patients. However, therapeutic improvement during lamotrigine was associated with increased Glx, suggesting that alterations in glutamatergic activity might be related to recovery from bipolar depression.
spellingShingle Godlewska, B
Emir, U
Masaki, C
Bargiotas, T
Cowen, P
Changes in brain Glx in depressed bipolar patients treated with lamotrigine: a proton MRS study
title Changes in brain Glx in depressed bipolar patients treated with lamotrigine: a proton MRS study
title_full Changes in brain Glx in depressed bipolar patients treated with lamotrigine: a proton MRS study
title_fullStr Changes in brain Glx in depressed bipolar patients treated with lamotrigine: a proton MRS study
title_full_unstemmed Changes in brain Glx in depressed bipolar patients treated with lamotrigine: a proton MRS study
title_short Changes in brain Glx in depressed bipolar patients treated with lamotrigine: a proton MRS study
title_sort changes in brain glx in depressed bipolar patients treated with lamotrigine a proton mrs study
work_keys_str_mv AT godlewskab changesinbrainglxindepressedbipolarpatientstreatedwithlamotrigineaprotonmrsstudy
AT emiru changesinbrainglxindepressedbipolarpatientstreatedwithlamotrigineaprotonmrsstudy
AT masakic changesinbrainglxindepressedbipolarpatientstreatedwithlamotrigineaprotonmrsstudy
AT bargiotast changesinbrainglxindepressedbipolarpatientstreatedwithlamotrigineaprotonmrsstudy
AT cowenp changesinbrainglxindepressedbipolarpatientstreatedwithlamotrigineaprotonmrsstudy