Automated method for detecting and reading seven-segment digits from images of blood glucose metres and blood pressure monitors

There is an increasing need for fast and accurate transfer of readings from blood glucose metres and blood pressure monitors to a smartphone mHealth application, without a dependency on Bluetooth technology. Most of the medical devices recommended for home monitoring use a seven-segment display to s...

Full description

Bibliographic Details
Main Authors: Finnegan, E, Villarroel, M, Velardo, C, Tarassenko, L
Format: Journal article
Language:English
Published: Taylor and Francis 2019
_version_ 1797075521278836736
author Finnegan, E
Villarroel, M
Velardo, C
Tarassenko, L
author_facet Finnegan, E
Villarroel, M
Velardo, C
Tarassenko, L
author_sort Finnegan, E
collection OXFORD
description There is an increasing need for fast and accurate transfer of readings from blood glucose metres and blood pressure monitors to a smartphone mHealth application, without a dependency on Bluetooth technology. Most of the medical devices recommended for home monitoring use a seven-segment display to show the recorded measurement to the patient. We aimed to achieve accurate detection and reading of the seven-segment digits displayed on these medical devices using an image taken in a realistic scenario by a smartphone camera. A synthetic dataset of seven-segment digits was developed in order to train and test a digit classifier. A dataset containing realistic images of blood glucose metres and blood pressure monitors using a variety of smartphone cameras was also created. The digit classifier was evaluated on a dataset of seven-segment digits manually extracted from the medical device images. These datasets along with the code for its development have been made public. The developed algorithm first preprocessed the input image using retinex with two bilateral filters and adaptive histogram equalisation. Subsequently, the digit segments were automatically located within the image by two techniques operating in parallel: Maximally Stable Extremal Regions (MSER) and connected components of a binarised image. A filtering and clustering algorithm was then designed to combine digit segments to form seven-segment digits. The resulting digits were classified using a Histogram of Orientated Gradients (HOG) feature set and a neural network trained on the synthetic digits. The model achieved 93% accuracy on digits found on the medical devices. The digit location algorithm achieved a F1 score of 0.87 and 0.80 on images of blood glucose metres and blood pressure monitors respectively. Very few assumptions were made of the locations of the digits on the devices so that the proposed algorithm can be easily implemented on new devices.
first_indexed 2024-03-06T23:51:27Z
format Journal article
id oxford-uuid:72be1fdf-327d-4d30-ab66-8892e642fc68
institution University of Oxford
language English
last_indexed 2024-03-06T23:51:27Z
publishDate 2019
publisher Taylor and Francis
record_format dspace
spelling oxford-uuid:72be1fdf-327d-4d30-ab66-8892e642fc682022-03-26T19:52:00ZAutomated method for detecting and reading seven-segment digits from images of blood glucose metres and blood pressure monitorsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:72be1fdf-327d-4d30-ab66-8892e642fc68EnglishSymplectic Elements at OxfordTaylor and Francis2019Finnegan, EVillarroel, MVelardo, CTarassenko, LThere is an increasing need for fast and accurate transfer of readings from blood glucose metres and blood pressure monitors to a smartphone mHealth application, without a dependency on Bluetooth technology. Most of the medical devices recommended for home monitoring use a seven-segment display to show the recorded measurement to the patient. We aimed to achieve accurate detection and reading of the seven-segment digits displayed on these medical devices using an image taken in a realistic scenario by a smartphone camera. A synthetic dataset of seven-segment digits was developed in order to train and test a digit classifier. A dataset containing realistic images of blood glucose metres and blood pressure monitors using a variety of smartphone cameras was also created. The digit classifier was evaluated on a dataset of seven-segment digits manually extracted from the medical device images. These datasets along with the code for its development have been made public. The developed algorithm first preprocessed the input image using retinex with two bilateral filters and adaptive histogram equalisation. Subsequently, the digit segments were automatically located within the image by two techniques operating in parallel: Maximally Stable Extremal Regions (MSER) and connected components of a binarised image. A filtering and clustering algorithm was then designed to combine digit segments to form seven-segment digits. The resulting digits were classified using a Histogram of Orientated Gradients (HOG) feature set and a neural network trained on the synthetic digits. The model achieved 93% accuracy on digits found on the medical devices. The digit location algorithm achieved a F1 score of 0.87 and 0.80 on images of blood glucose metres and blood pressure monitors respectively. Very few assumptions were made of the locations of the digits on the devices so that the proposed algorithm can be easily implemented on new devices.
spellingShingle Finnegan, E
Villarroel, M
Velardo, C
Tarassenko, L
Automated method for detecting and reading seven-segment digits from images of blood glucose metres and blood pressure monitors
title Automated method for detecting and reading seven-segment digits from images of blood glucose metres and blood pressure monitors
title_full Automated method for detecting and reading seven-segment digits from images of blood glucose metres and blood pressure monitors
title_fullStr Automated method for detecting and reading seven-segment digits from images of blood glucose metres and blood pressure monitors
title_full_unstemmed Automated method for detecting and reading seven-segment digits from images of blood glucose metres and blood pressure monitors
title_short Automated method for detecting and reading seven-segment digits from images of blood glucose metres and blood pressure monitors
title_sort automated method for detecting and reading seven segment digits from images of blood glucose metres and blood pressure monitors
work_keys_str_mv AT finnegane automatedmethodfordetectingandreadingsevensegmentdigitsfromimagesofbloodglucosemetresandbloodpressuremonitors
AT villarroelm automatedmethodfordetectingandreadingsevensegmentdigitsfromimagesofbloodglucosemetresandbloodpressuremonitors
AT velardoc automatedmethodfordetectingandreadingsevensegmentdigitsfromimagesofbloodglucosemetresandbloodpressuremonitors
AT tarassenkol automatedmethodfordetectingandreadingsevensegmentdigitsfromimagesofbloodglucosemetresandbloodpressuremonitors