Guided-MLESAC: faster image transform estimation by using matching priors.

MLESAC is an established algorithm for maximum-likelihood estimation by random sampling consensus, devised for computing multiview entities like the fundamental matrix from correspondences between image features. A shortcoming of the method is that it assumes that little is known about the prior pro...

Full description

Bibliographic Details
Main Authors: Tordoff, B, Murray, D
Format: Journal article
Language:English
Published: 2005
Description
Summary:MLESAC is an established algorithm for maximum-likelihood estimation by random sampling consensus, devised for computing multiview entities like the fundamental matrix from correspondences between image features. A shortcoming of the method is that it assumes that little is known about the prior probabilities of the validities of the correspondences. This paper explains the consequences of that omission and describes how the algorithm's theoretical standing and practical performance can be enhanced by deriving estimates of these prior probabilities. Using the priors in guided-MLESAC is found to give an order of magnitude speed increase for problems where the correspondences are described by one image transformation and clutter. This paper describes two further modifications to guided-MLESAC. The first shows how all putative matches, ratherthan just the best, from a particularfeature can be taken forward into the sampling stage, albeit at the expense of additional computation. The second suggests how to propagate the output from one frame forward to successive frames. The additional information makes guided-MLESAC computationally realistic at video-rates for correspondence sets modeled by two transformations and clutter.