Guided-MLESAC: faster image transform estimation by using matching priors.
MLESAC is an established algorithm for maximum-likelihood estimation by random sampling consensus, devised for computing multiview entities like the fundamental matrix from correspondences between image features. A shortcoming of the method is that it assumes that little is known about the prior pro...
Hlavní autoři: | Tordoff, B, Murray, D |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
2005
|
Podobné jednotky
-
MLESAC: a new robust estimator with application to estimating image geometry
Autor: Torr, PHS, a další
Vydáno: (2000) -
Guided sampling and consensus for motion estimation
Autor: Tordoff, B, a další
Vydáno: (2002) -
Faster and Simpler Approximation of Stable Matchings
Autor: Katarzyna Paluch
Vydáno: (2014-04-01) -
Image matching via progressive priors
Autor: Weiqing Wang, a další
Vydáno: (2022-09-01) -
Faster Deterministic Distributed MIS and Approximate Matching
Autor: Ghaffari, Mohsen, a další
Vydáno: (2023)