Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols

High power conversion efficiency (PCE) inverted organic photovoltaics (OPVs) usually use thermally evaporated MoO3 as a hole transporting layer (HTL). Despite the high PCE values reported, stability investigations are still limited and the exact degradation mechanisms of inverted OPVs using thermall...

Full description

Bibliographic Details
Main Authors: Hermerschmidt, F, Savva, A, Georgiou, E, Tuladhar, SM, Durrant, JR, McCulloch, I, Bradley, DDC, Brabec, CJ, Nelson, J, Choulis, SA
Format: Journal article
Language:English
Published: American Chemical Society 2017
_version_ 1826279039302631424
author Hermerschmidt, F
Savva, A
Georgiou, E
Tuladhar, SM
Durrant, JR
McCulloch, I
Bradley, DDC
Brabec, CJ
Nelson, J
Choulis, SA
author_facet Hermerschmidt, F
Savva, A
Georgiou, E
Tuladhar, SM
Durrant, JR
McCulloch, I
Bradley, DDC
Brabec, CJ
Nelson, J
Choulis, SA
author_sort Hermerschmidt, F
collection OXFORD
description High power conversion efficiency (PCE) inverted organic photovoltaics (OPVs) usually use thermally evaporated MoO3 as a hole transporting layer (HTL). Despite the high PCE values reported, stability investigations are still limited and the exact degradation mechanisms of inverted OPVs using thermally evaporated MoO3 HTL remain unclear under different environmental stress factors. In this study, we monitor the accelerated lifetime performance under the ISOS-D-2 protocol (heat conditions 65 °C) of nonencapsulated inverted OPVs based on the thiophene-based active layer materials poly(3-hexylthiophene) (P3HT), poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7), and thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPPTTT) blended with [6,6]-phenyl C71-butyric acid methyl ester (PC[70]BM). The presented investigation of degradation mechanisms focus on optimized P3HT:PC[70]BM-based inverted OPVs. Specifically, we present a systematic study on the thermal stability of inverted P3HT:PC[70]BM OPVs using solution-processed poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and evaporated MoO3 HTL. Using a series of measurements and reverse engineering methods, we report that the P3HT:PC[70]BM/MoO3 interface is the main origin of failure of the P3HT:PC[70]BM-based inverted OPVs under intense heat conditions, a trend that is also observed for the other two thiophene-based polymers used in this study.
first_indexed 2024-03-06T23:52:53Z
format Journal article
id oxford-uuid:7338e931-2da2-44e8-879d-34fc0c268955
institution University of Oxford
language English
last_indexed 2024-03-06T23:52:53Z
publishDate 2017
publisher American Chemical Society
record_format dspace
spelling oxford-uuid:7338e931-2da2-44e8-879d-34fc0c2689552022-03-26T19:54:57ZInfluence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocolsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:7338e931-2da2-44e8-879d-34fc0c268955EnglishSymplectic Elements at OxfordAmerican Chemical Society2017Hermerschmidt, FSavva, AGeorgiou, ETuladhar, SMDurrant, JRMcCulloch, IBradley, DDCBrabec, CJNelson, JChoulis, SAHigh power conversion efficiency (PCE) inverted organic photovoltaics (OPVs) usually use thermally evaporated MoO3 as a hole transporting layer (HTL). Despite the high PCE values reported, stability investigations are still limited and the exact degradation mechanisms of inverted OPVs using thermally evaporated MoO3 HTL remain unclear under different environmental stress factors. In this study, we monitor the accelerated lifetime performance under the ISOS-D-2 protocol (heat conditions 65 °C) of nonencapsulated inverted OPVs based on the thiophene-based active layer materials poly(3-hexylthiophene) (P3HT), poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7), and thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPPTTT) blended with [6,6]-phenyl C71-butyric acid methyl ester (PC[70]BM). The presented investigation of degradation mechanisms focus on optimized P3HT:PC[70]BM-based inverted OPVs. Specifically, we present a systematic study on the thermal stability of inverted P3HT:PC[70]BM OPVs using solution-processed poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and evaporated MoO3 HTL. Using a series of measurements and reverse engineering methods, we report that the P3HT:PC[70]BM/MoO3 interface is the main origin of failure of the P3HT:PC[70]BM-based inverted OPVs under intense heat conditions, a trend that is also observed for the other two thiophene-based polymers used in this study.
spellingShingle Hermerschmidt, F
Savva, A
Georgiou, E
Tuladhar, SM
Durrant, JR
McCulloch, I
Bradley, DDC
Brabec, CJ
Nelson, J
Choulis, SA
Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols
title Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols
title_full Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols
title_fullStr Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols
title_full_unstemmed Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols
title_short Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols
title_sort influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated heat lifetime protocols
work_keys_str_mv AT hermerschmidtf influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT savvaa influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT georgioue influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT tuladharsm influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT durrantjr influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT mccullochi influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT bradleyddc influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT brabeccj influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT nelsonj influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols
AT choulissa influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols