Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols
High power conversion efficiency (PCE) inverted organic photovoltaics (OPVs) usually use thermally evaporated MoO3 as a hole transporting layer (HTL). Despite the high PCE values reported, stability investigations are still limited and the exact degradation mechanisms of inverted OPVs using thermall...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
American Chemical Society
2017
|
_version_ | 1826279039302631424 |
---|---|
author | Hermerschmidt, F Savva, A Georgiou, E Tuladhar, SM Durrant, JR McCulloch, I Bradley, DDC Brabec, CJ Nelson, J Choulis, SA |
author_facet | Hermerschmidt, F Savva, A Georgiou, E Tuladhar, SM Durrant, JR McCulloch, I Bradley, DDC Brabec, CJ Nelson, J Choulis, SA |
author_sort | Hermerschmidt, F |
collection | OXFORD |
description | High power conversion efficiency (PCE) inverted organic photovoltaics (OPVs) usually use thermally evaporated MoO3 as a hole transporting layer (HTL). Despite the high PCE values reported, stability investigations are still limited and the exact degradation mechanisms of inverted OPVs using thermally evaporated MoO3 HTL remain unclear under different environmental stress factors. In this study, we monitor the accelerated lifetime performance under the ISOS-D-2 protocol (heat conditions 65 °C) of nonencapsulated inverted OPVs based on the thiophene-based active layer materials poly(3-hexylthiophene) (P3HT), poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7), and thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPPTTT) blended with [6,6]-phenyl C71-butyric acid methyl ester (PC[70]BM). The presented investigation of degradation mechanisms focus on optimized P3HT:PC[70]BM-based inverted OPVs. Specifically, we present a systematic study on the thermal stability of inverted P3HT:PC[70]BM OPVs using solution-processed poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and evaporated MoO3 HTL. Using a series of measurements and reverse engineering methods, we report that the P3HT:PC[70]BM/MoO3 interface is the main origin of failure of the P3HT:PC[70]BM-based inverted OPVs under intense heat conditions, a trend that is also observed for the other two thiophene-based polymers used in this study. |
first_indexed | 2024-03-06T23:52:53Z |
format | Journal article |
id | oxford-uuid:7338e931-2da2-44e8-879d-34fc0c268955 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T23:52:53Z |
publishDate | 2017 |
publisher | American Chemical Society |
record_format | dspace |
spelling | oxford-uuid:7338e931-2da2-44e8-879d-34fc0c2689552022-03-26T19:54:57ZInfluence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocolsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:7338e931-2da2-44e8-879d-34fc0c268955EnglishSymplectic Elements at OxfordAmerican Chemical Society2017Hermerschmidt, FSavva, AGeorgiou, ETuladhar, SMDurrant, JRMcCulloch, IBradley, DDCBrabec, CJNelson, JChoulis, SAHigh power conversion efficiency (PCE) inverted organic photovoltaics (OPVs) usually use thermally evaporated MoO3 as a hole transporting layer (HTL). Despite the high PCE values reported, stability investigations are still limited and the exact degradation mechanisms of inverted OPVs using thermally evaporated MoO3 HTL remain unclear under different environmental stress factors. In this study, we monitor the accelerated lifetime performance under the ISOS-D-2 protocol (heat conditions 65 °C) of nonencapsulated inverted OPVs based on the thiophene-based active layer materials poly(3-hexylthiophene) (P3HT), poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7), and thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPPTTT) blended with [6,6]-phenyl C71-butyric acid methyl ester (PC[70]BM). The presented investigation of degradation mechanisms focus on optimized P3HT:PC[70]BM-based inverted OPVs. Specifically, we present a systematic study on the thermal stability of inverted P3HT:PC[70]BM OPVs using solution-processed poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and evaporated MoO3 HTL. Using a series of measurements and reverse engineering methods, we report that the P3HT:PC[70]BM/MoO3 interface is the main origin of failure of the P3HT:PC[70]BM-based inverted OPVs under intense heat conditions, a trend that is also observed for the other two thiophene-based polymers used in this study. |
spellingShingle | Hermerschmidt, F Savva, A Georgiou, E Tuladhar, SM Durrant, JR McCulloch, I Bradley, DDC Brabec, CJ Nelson, J Choulis, SA Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols |
title | Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols |
title_full | Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols |
title_fullStr | Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols |
title_full_unstemmed | Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols |
title_short | Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols |
title_sort | influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated heat lifetime protocols |
work_keys_str_mv | AT hermerschmidtf influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols AT savvaa influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols AT georgioue influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols AT tuladharsm influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols AT durrantjr influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols AT mccullochi influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols AT bradleyddc influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols AT brabeccj influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols AT nelsonj influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols AT choulissa influenceoftheholetransportinglayeronthethermalstabilityofinvertedorganicphotovoltaicsusingacceleratedheatlifetimeprotocols |