Consistent resting-state networks across healthy subjects.

Functional MRI (fMRI) can be applied to study the functional connectivity of the human brain. It has been suggested that fluctuations in the blood oxygenation level-dependent (BOLD) signal during rest reflect the neuronal baseline activity of the brain, representing the state of the human brain in t...

Full description

Bibliographic Details
Main Authors: Damoiseaux, J, Rombouts, SA, Barkhof, F, Scheltens, P, Stam, C, Smith, S, Beckmann, C
Format: Journal article
Language:English
Published: 2006
_version_ 1797075734020227072
author Damoiseaux, J
Rombouts, SA
Barkhof, F
Scheltens, P
Stam, C
Smith, S
Beckmann, C
author_facet Damoiseaux, J
Rombouts, SA
Barkhof, F
Scheltens, P
Stam, C
Smith, S
Beckmann, C
author_sort Damoiseaux, J
collection OXFORD
description Functional MRI (fMRI) can be applied to study the functional connectivity of the human brain. It has been suggested that fluctuations in the blood oxygenation level-dependent (BOLD) signal during rest reflect the neuronal baseline activity of the brain, representing the state of the human brain in the absence of goal-directed neuronal action and external input, and that these slow fluctuations correspond to functionally relevant resting-state networks. Several studies on resting fMRI have been conducted, reporting an apparent similarity between the identified patterns. The spatial consistency of these resting patterns, however, has not yet been evaluated and quantified. In this study, we apply a data analysis approach called tensor probabilistic independent component analysis to resting-state fMRI data to find coherencies that are consistent across subjects and sessions. We characterize and quantify the consistency of these effects by using a bootstrapping approach, and we estimate the BOLD amplitude modulation as well as the voxel-wise cross-subject variation. The analysis found 10 patterns with potential functional relevance, consisting of regions known to be involved in motor function, visual processing, executive functioning, auditory processing, memory, and the so-called default-mode network, each with BOLD signal changes up to 3%. In general, areas with a high mean percentage BOLD signal are consistent and show the least variation around the mean. These findings show that the baseline activity of the brain is consistent across subjects exhibiting significant temporal dynamics, with percentage BOLD signal change comparable with the signal changes found in task-related experiments.
first_indexed 2024-03-06T23:54:22Z
format Journal article
id oxford-uuid:73b05be1-7623-4d86-954c-fa727852a8ef
institution University of Oxford
language English
last_indexed 2024-03-06T23:54:22Z
publishDate 2006
record_format dspace
spelling oxford-uuid:73b05be1-7623-4d86-954c-fa727852a8ef2022-03-26T19:58:08ZConsistent resting-state networks across healthy subjects.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:73b05be1-7623-4d86-954c-fa727852a8efEnglishSymplectic Elements at Oxford2006Damoiseaux, JRombouts, SABarkhof, FScheltens, PStam, CSmith, SBeckmann, CFunctional MRI (fMRI) can be applied to study the functional connectivity of the human brain. It has been suggested that fluctuations in the blood oxygenation level-dependent (BOLD) signal during rest reflect the neuronal baseline activity of the brain, representing the state of the human brain in the absence of goal-directed neuronal action and external input, and that these slow fluctuations correspond to functionally relevant resting-state networks. Several studies on resting fMRI have been conducted, reporting an apparent similarity between the identified patterns. The spatial consistency of these resting patterns, however, has not yet been evaluated and quantified. In this study, we apply a data analysis approach called tensor probabilistic independent component analysis to resting-state fMRI data to find coherencies that are consistent across subjects and sessions. We characterize and quantify the consistency of these effects by using a bootstrapping approach, and we estimate the BOLD amplitude modulation as well as the voxel-wise cross-subject variation. The analysis found 10 patterns with potential functional relevance, consisting of regions known to be involved in motor function, visual processing, executive functioning, auditory processing, memory, and the so-called default-mode network, each with BOLD signal changes up to 3%. In general, areas with a high mean percentage BOLD signal are consistent and show the least variation around the mean. These findings show that the baseline activity of the brain is consistent across subjects exhibiting significant temporal dynamics, with percentage BOLD signal change comparable with the signal changes found in task-related experiments.
spellingShingle Damoiseaux, J
Rombouts, SA
Barkhof, F
Scheltens, P
Stam, C
Smith, S
Beckmann, C
Consistent resting-state networks across healthy subjects.
title Consistent resting-state networks across healthy subjects.
title_full Consistent resting-state networks across healthy subjects.
title_fullStr Consistent resting-state networks across healthy subjects.
title_full_unstemmed Consistent resting-state networks across healthy subjects.
title_short Consistent resting-state networks across healthy subjects.
title_sort consistent resting state networks across healthy subjects
work_keys_str_mv AT damoiseauxj consistentrestingstatenetworksacrosshealthysubjects
AT romboutssa consistentrestingstatenetworksacrosshealthysubjects
AT barkhoff consistentrestingstatenetworksacrosshealthysubjects
AT scheltensp consistentrestingstatenetworksacrosshealthysubjects
AT stamc consistentrestingstatenetworksacrosshealthysubjects
AT smiths consistentrestingstatenetworksacrosshealthysubjects
AT beckmannc consistentrestingstatenetworksacrosshealthysubjects