Phase-change materials for energy-efficient photonic memory and computing
Neuromorphic algorithms achieve remarkable performance milestones in tasks where humans have traditionally excelled. The breadth of data generated by these paradigms is, however, unsustainable by conventional computing chips. In-memory computing hardware aims to mimic biological neural networks and...
Auteurs principaux: | Zhou, W, Farmakidis, N, Feldmann, J, Li, X, Tan, J, He, Y, Wright, CD, Pernice, WHP, Bhaskaran, H |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Springer Nature
2022
|
Documents similaires
-
Integrated 256 cell photonic phase-change memory with 512-bit capacity
par: Feldmann, J, et autres
Publié: (2019) -
Artificial biphasic synapses based on nonvolatile phase‐change photonic memory cells
par: Zhou, W, et autres
Publié: (2022) -
Chalcogenide phase-change devices for neuromorphic photonic computing
par: Brueckerhoff-Plueckelmann, F, et autres
Publié: (2021) -
All-photonic in-memory computing based on phase-change materials
par: Rios, C, et autres
Publié: (2019) -
A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices
par: Gemo, E, et autres
Publié: (2021)