Cohomogeneity one shrinking Ricci solitons: an analytic and numerical study
We use analytical and numerical methods to investigate the equations for cohomogeneity one shrinking gradient Ricci solitons. We show the existence of a winding number for this system around the subvariety of phase space corresponding to Einstein solutions and obtain some estimates for it. We prove...
Main Authors: | , , |
---|---|
Format: | Journal article |
Published: |
International Press
2013
|
Summary: | We use analytical and numerical methods to investigate the equations for cohomogeneity one shrinking gradient Ricci solitons. We show the existence of a winding number for this system around the subvariety of phase space corresponding to Einstein solutions and obtain some estimates for it. We prove a non-existence result for certain orbit types, analogous to that of Böhm in the Einstein case. We also carry out numerical investigations for selected orbit types. |
---|