Evolving heterotic gauge backgrounds: genetic algorithms versus reinforcement learning
The immensity of the string landscape and the difficulty of identifying solutions that match the observed features of particle physics have raised serious questions about the predictive power of string theory. Modern methods of optimisation and search can, however, significantly improve the prospect...
Auteurs principaux: | Abel, S, Constantin, A, Harvey, TR, Lukas, A |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Wiley
2022
|
Documents similaires
-
Heterotic string model building with monad bundles and reinforcement learning
par: Constantin, A, et autres
Publié: (2022) -
Heterotic string model building with monad bundles and reinforcement learning
par: Constantin, A, et autres
Publié: (2021) -
String model building, reinforcement learning and genetic algorithms
par: Abel, S, et autres
Publié: (2021) -
Decoding nature with nature’s tools: heterotic line bundle models of particle physics with genetic algorithms and quantum annealing
par: Abel, SA, et autres
Publié: (2023) -
Gauge five-brane moduli in four-dimensional heterotic models
par: Gray, J, et autres
Publié: (2004)