Evolving heterotic gauge backgrounds: genetic algorithms versus reinforcement learning
The immensity of the string landscape and the difficulty of identifying solutions that match the observed features of particle physics have raised serious questions about the predictive power of string theory. Modern methods of optimisation and search can, however, significantly improve the prospect...
主要な著者: | Abel, S, Constantin, A, Harvey, TR, Lukas, A |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Wiley
2022
|
類似資料
-
Heterotic string model building with monad bundles and reinforcement learning
著者:: Constantin, A, 等
出版事項: (2022) -
Heterotic string model building with monad bundles and reinforcement learning
著者:: Constantin, A, 等
出版事項: (2021) -
String model building, reinforcement learning and genetic algorithms
著者:: Abel, S, 等
出版事項: (2021) -
Decoding nature with nature’s tools: heterotic line bundle models of particle physics with genetic algorithms and quantum annealing
著者:: Abel, SA, 等
出版事項: (2023) -
Gauge five-brane moduli in four-dimensional heterotic models
著者:: Gray, J, 等
出版事項: (2004)