Operational effects of the UNOT gate on classical and quantum correlations

The NOT gate that flips a classical bit is ubiquitous in classical information processing. However its quantum analogue, the universal NOT (UNOT) gate that flips a quantum spin in any alignment into its antipodal counterpart is strictly forbidden. Here we explore the connection between this discrepa...

Full description

Bibliographic Details
Main Authors: Zhang, K, Ma, J, Zhang, X, Thompson, J, Vedral, V, Kim, K, Gu, M
Format: Journal article
Language:English
Published: Elsevier 2018
Description
Summary:The NOT gate that flips a classical bit is ubiquitous in classical information processing. However its quantum analogue, the universal NOT (UNOT) gate that flips a quantum spin in any alignment into its antipodal counterpart is strictly forbidden. Here we explore the connection between this discrepancy and how UNOT gates affect classical and quantum correlations. We show that while a UNOT gate always preserves classical correlations between two spins, it can non-locally increase or decrease their shared discord in ways that allow violation of the data processing inequality. We experimentally illustrate this using a multi-level trapped 171Yb+ ion that allows simulation of anti-unitary operations.