A Schanuel property for j
I give a model-theoretic setting for the modular j function and its derivatives. These structures, here called j-fields, provide an adequate setting for interpreting the Ax-Schanuel theorem for j of J. Pila and J. Tsimerman. Following the ideas of M. Bays, J. Kirby and A. J. Wilkie for exponential f...
第一著者: | Eterović, S |
---|---|
フォーマット: | Journal article |
出版事項: |
Wiley
2018
|
類似資料
-
Ax-Schanuel for the j-function
著者:: Pila, J, 等
出版事項: (2016) -
Skolem meets Schanuel
著者:: Bilu, Y, 等
出版事項: (2022) -
Ax-Schanuel for Shimura varieties
著者:: Mok, N, 等
出版事項: (2019) -
A Schanuel condition for Weierstrass equations
著者:: Kirby, J
出版事項: (2005) -
Exponential sums equations and the Schanuel conjecture
著者:: Zilber, B
出版事項: (2002)