Linked independent component analysis for multimodal data fusion.
In recent years, neuroimaging studies have increasingly been acquiring multiple modalities of data and searching for task- or disease-related changes in each modality separately. A major challenge in analysis is to find systematic approaches for fusing these differing data types together to automati...
Päätekijät: | Groves, A, Beckmann, C, Smith, S, Woolrich, M |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
2011
|
Samankaltaisia teoksia
-
Denoising scanner effects from multimodal MRI data using linked independent component analysis
Tekijä: Huanjie Li, et al.
Julkaistu: (2020-03-01) -
Denoising scanner effects from multimodal MRI data using linked independent component analysis
Tekijä: Li, H, et al.
Julkaistu: (2019) -
Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.
Tekijä: Salimi-Khorshidi, G, et al.
Julkaistu: (2014) -
Artefact detection in FMRI data using independent component analysis
Tekijä: Beckmann, C, et al.
Julkaistu: (2000) -
Tensorial extensions of independent component analysis for multisubject FMRI analysis.
Tekijä: Beckmann, C, et al.
Julkaistu: (2005)