Coupling Turing stripes to active flows

We numerically solve the active nematohydrodynamic equations of motion, coupled to a Turing reaction-diffusion model, to study the effect of active nematic flow on the stripe patterns resulting from a Turing instability. If the activity is uniform across the system, the Turing patterns dissociate wh...

Full description

Bibliographic Details
Main Authors: Bhattacharyya, S, Yeomans, JM
Format: Journal article
Language:English
Published: Royal Society of Chemistry 2021
Description
Summary:We numerically solve the active nematohydrodynamic equations of motion, coupled to a Turing reaction-diffusion model, to study the effect of active nematic flow on the stripe patterns resulting from a Turing instability. If the activity is uniform across the system, the Turing patterns dissociate when the flux from active advection balances that from the reaction-diffusion process. If the activity is coupled to the concentration of Turing morphogens, and neighbouring stripes have equal and opposite activity, the system self organises into a pattern of shearing flows, with stripes tending to fracture and slip sideways to join their neighbours. We discuss the role of active instabilities in controlling the crossover between these limits. Our results are of relevance to mechanochemical coupling in biological systems.