The Lubin–Tate theory of configuration spaces: I

We construct a spectral sequence converging to the Lubin–Tate theory, that is, Morava <em>E</em>-theory, of unordered configuration spaces and identify its E<sup>2</sup>-page as the homology of a Chevalley–Eilenberg-like complex for Hecke Lie algebras. Based on this, we comp...

Full description

Bibliographic Details
Main Authors: Brantner, L, Hahn, J, Knudsen, B
Format: Journal article
Language:English
Published: Wiley 2024
_version_ 1817931388364521472
author Brantner, L
Hahn, J
Knudsen, B
author_facet Brantner, L
Hahn, J
Knudsen, B
author_sort Brantner, L
collection OXFORD
description We construct a spectral sequence converging to the Lubin–Tate theory, that is, Morava <em>E</em>-theory, of unordered configuration spaces and identify its E<sup>2</sup>-page as the homology of a Chevalley–Eilenberg-like complex for Hecke Lie algebras. Based on this, we compute the <em>E</em>-theory of the weight <em>p</em> summands of iterated loop spaces of spheres (parametrising the weight <em>p</em> operations on 𝔼<sub><em>n</em></sub>-algebras), as well as the <em>E</em>-theory of the configuration spaces of <em>p</em> points on a punctured surface. We read off the corresponding Morava <em>K</em>-theory groups, which appear in a conjecture by Ravenel. Finally, we compute the 𝔽<sub><em>p</em></sub>-homology of the space of unordered configurations of <em>p</em> particles on a punctured surface.
first_indexed 2024-09-25T04:33:32Z
format Journal article
id oxford-uuid:7512cc64-07a5-4223-8f87-5c1a967ac950
institution University of Oxford
language English
last_indexed 2024-12-09T03:21:14Z
publishDate 2024
publisher Wiley
record_format dspace
spelling oxford-uuid:7512cc64-07a5-4223-8f87-5c1a967ac9502024-11-12T12:27:58ZThe Lubin–Tate theory of configuration spaces: IJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:7512cc64-07a5-4223-8f87-5c1a967ac950EnglishSymplectic ElementsWiley2024Brantner, LHahn, JKnudsen, BWe construct a spectral sequence converging to the Lubin–Tate theory, that is, Morava <em>E</em>-theory, of unordered configuration spaces and identify its E<sup>2</sup>-page as the homology of a Chevalley–Eilenberg-like complex for Hecke Lie algebras. Based on this, we compute the <em>E</em>-theory of the weight <em>p</em> summands of iterated loop spaces of spheres (parametrising the weight <em>p</em> operations on 𝔼<sub><em>n</em></sub>-algebras), as well as the <em>E</em>-theory of the configuration spaces of <em>p</em> points on a punctured surface. We read off the corresponding Morava <em>K</em>-theory groups, which appear in a conjecture by Ravenel. Finally, we compute the 𝔽<sub><em>p</em></sub>-homology of the space of unordered configurations of <em>p</em> particles on a punctured surface.
spellingShingle Brantner, L
Hahn, J
Knudsen, B
The Lubin–Tate theory of configuration spaces: I
title The Lubin–Tate theory of configuration spaces: I
title_full The Lubin–Tate theory of configuration spaces: I
title_fullStr The Lubin–Tate theory of configuration spaces: I
title_full_unstemmed The Lubin–Tate theory of configuration spaces: I
title_short The Lubin–Tate theory of configuration spaces: I
title_sort lubin tate theory of configuration spaces i
work_keys_str_mv AT brantnerl thelubintatetheoryofconfigurationspacesi
AT hahnj thelubintatetheoryofconfigurationspacesi
AT knudsenb thelubintatetheoryofconfigurationspacesi
AT brantnerl lubintatetheoryofconfigurationspacesi
AT hahnj lubintatetheoryofconfigurationspacesi
AT knudsenb lubintatetheoryofconfigurationspacesi