The impact of water on slip system activity in olivine and the formation of bimodal crystallographic preferred orientations
Crystallographic preferred orientations (CPOs) in olivine are widely used to infer the mechanisms, conditions, and kinematics of deformation of mantle rocks. Recent experiments on water-saturated olivine were the first to produce a complex CPO characterised by bimodal orientation distributions of bo...
Prif Awduron: | , , , , , , , |
---|---|
Fformat: | Journal article |
Cyhoeddwyd: |
Elsevier
2019
|
_version_ | 1826279550286299136 |
---|---|
author | Wallis, D Hansen, L Tasaka, M Kumamoto, K Parsons, A Lloyd, G Kohlstedt, D Wilkinson, A |
author_facet | Wallis, D Hansen, L Tasaka, M Kumamoto, K Parsons, A Lloyd, G Kohlstedt, D Wilkinson, A |
author_sort | Wallis, D |
collection | OXFORD |
description | Crystallographic preferred orientations (CPOs) in olivine are widely used to infer the mechanisms, conditions, and kinematics of deformation of mantle rocks. Recent experiments on water-saturated olivine were the first to produce a complex CPO characterised by bimodal orientation distributions of both [100] and [001] axes and inferred to form by combined activity of (001)[100], (100)[001], and (010)[100] slip. This result potentially provides a new microstructural indicator of deformation in the presence of elevated concentrations of intracrystalline hydrous point defects and has implications for the interpretation of seismic anisotropy. Here, we document a previously unexplained natural example of this CPO type in a xenolith from Lesotho and demonstrate that it too may be explained by elevated concentrations of hydrous point defects. We test and confirm the hypothesis that combined (001)[100], (100)[001], and (010)[100] slip were responsible for formation of this CPO by (1) using high-angular resolution electron backscatter diffraction to precisely characterise the dislocation types present in both the experimental and natural samples and (2) employing visco-plastic self-consistent simulations of CPO evolution to assess the ability of these slip systems to generate the observed CPO. Finally, we utilise calculations based on effective-medium theory to predict the anisotropy of seismic wave velocities arising from the CPO of the xenolith. Maxima in S-wave velocities and anisotropy are parallel to both the shear direction and shear plane normal, whereas maxima in P-wave velocities are oblique to both, adding complexity to interpretation of deformation kinematics from seismic anisotropy. |
first_indexed | 2024-03-07T00:00:25Z |
format | Journal article |
id | oxford-uuid:75bc8962-7a5f-4144-b44e-8aadb9f3a0fa |
institution | University of Oxford |
last_indexed | 2024-03-07T00:00:25Z |
publishDate | 2019 |
publisher | Elsevier |
record_format | dspace |
spelling | oxford-uuid:75bc8962-7a5f-4144-b44e-8aadb9f3a0fa2022-03-26T20:11:18ZThe impact of water on slip system activity in olivine and the formation of bimodal crystallographic preferred orientationsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:75bc8962-7a5f-4144-b44e-8aadb9f3a0faSymplectic Elements at OxfordElsevier2019Wallis, DHansen, LTasaka, MKumamoto, KParsons, ALloyd, GKohlstedt, DWilkinson, ACrystallographic preferred orientations (CPOs) in olivine are widely used to infer the mechanisms, conditions, and kinematics of deformation of mantle rocks. Recent experiments on water-saturated olivine were the first to produce a complex CPO characterised by bimodal orientation distributions of both [100] and [001] axes and inferred to form by combined activity of (001)[100], (100)[001], and (010)[100] slip. This result potentially provides a new microstructural indicator of deformation in the presence of elevated concentrations of intracrystalline hydrous point defects and has implications for the interpretation of seismic anisotropy. Here, we document a previously unexplained natural example of this CPO type in a xenolith from Lesotho and demonstrate that it too may be explained by elevated concentrations of hydrous point defects. We test and confirm the hypothesis that combined (001)[100], (100)[001], and (010)[100] slip were responsible for formation of this CPO by (1) using high-angular resolution electron backscatter diffraction to precisely characterise the dislocation types present in both the experimental and natural samples and (2) employing visco-plastic self-consistent simulations of CPO evolution to assess the ability of these slip systems to generate the observed CPO. Finally, we utilise calculations based on effective-medium theory to predict the anisotropy of seismic wave velocities arising from the CPO of the xenolith. Maxima in S-wave velocities and anisotropy are parallel to both the shear direction and shear plane normal, whereas maxima in P-wave velocities are oblique to both, adding complexity to interpretation of deformation kinematics from seismic anisotropy. |
spellingShingle | Wallis, D Hansen, L Tasaka, M Kumamoto, K Parsons, A Lloyd, G Kohlstedt, D Wilkinson, A The impact of water on slip system activity in olivine and the formation of bimodal crystallographic preferred orientations |
title | The impact of water on slip system activity in olivine and the formation of bimodal crystallographic preferred orientations |
title_full | The impact of water on slip system activity in olivine and the formation of bimodal crystallographic preferred orientations |
title_fullStr | The impact of water on slip system activity in olivine and the formation of bimodal crystallographic preferred orientations |
title_full_unstemmed | The impact of water on slip system activity in olivine and the formation of bimodal crystallographic preferred orientations |
title_short | The impact of water on slip system activity in olivine and the formation of bimodal crystallographic preferred orientations |
title_sort | impact of water on slip system activity in olivine and the formation of bimodal crystallographic preferred orientations |
work_keys_str_mv | AT wallisd theimpactofwateronslipsystemactivityinolivineandtheformationofbimodalcrystallographicpreferredorientations AT hansenl theimpactofwateronslipsystemactivityinolivineandtheformationofbimodalcrystallographicpreferredorientations AT tasakam theimpactofwateronslipsystemactivityinolivineandtheformationofbimodalcrystallographicpreferredorientations AT kumamotok theimpactofwateronslipsystemactivityinolivineandtheformationofbimodalcrystallographicpreferredorientations AT parsonsa theimpactofwateronslipsystemactivityinolivineandtheformationofbimodalcrystallographicpreferredorientations AT lloydg theimpactofwateronslipsystemactivityinolivineandtheformationofbimodalcrystallographicpreferredorientations AT kohlstedtd theimpactofwateronslipsystemactivityinolivineandtheformationofbimodalcrystallographicpreferredorientations AT wilkinsona theimpactofwateronslipsystemactivityinolivineandtheformationofbimodalcrystallographicpreferredorientations AT wallisd impactofwateronslipsystemactivityinolivineandtheformationofbimodalcrystallographicpreferredorientations AT hansenl impactofwateronslipsystemactivityinolivineandtheformationofbimodalcrystallographicpreferredorientations AT tasakam impactofwateronslipsystemactivityinolivineandtheformationofbimodalcrystallographicpreferredorientations AT kumamotok impactofwateronslipsystemactivityinolivineandtheformationofbimodalcrystallographicpreferredorientations AT parsonsa impactofwateronslipsystemactivityinolivineandtheformationofbimodalcrystallographicpreferredorientations AT lloydg impactofwateronslipsystemactivityinolivineandtheformationofbimodalcrystallographicpreferredorientations AT kohlstedtd impactofwateronslipsystemactivityinolivineandtheformationofbimodalcrystallographicpreferredorientations AT wilkinsona impactofwateronslipsystemactivityinolivineandtheformationofbimodalcrystallographicpreferredorientations |